Gosset Graph

The Gosset graph is a 27-regular graph on 56 vertices which is the skeleton of the Gosset polytope 3_(21).

It is a distance-regular graph with intersection array {27,10,1;1,10,27}, and therefore also a Taylor graph. It is also distance-transitive.

It is an integral graph with graph spectrum (-3)^(21)(-1)^(27)9^727^1.

The distance 2-graph of the Gosset graph is itself a distance-transitive and distance-regular graph with intersection array {27,16,1;1,16,27} (and therefore another Taylor graph).

See also

Distance-Regular Graph, Taylor Graph

Explore with Wolfram|Alpha


Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance Regular Graphs. New York: Springer-Verlag, p. 103, 1989.Coxeter, H. S. M. "Extreme Forms." Canad. J. Math. 3, 391-441, "Gosset Graph." "Distance-2 Graph of Gosset Graph.", C. D. "Eigenpolytopes of Distance Regular Graphs." Canad. J. Math. 59, 739-755, 1998.Miller, G. A.; Blichfeldt, H. F.; and Dickson, L. E. Part 3 in Theory and Applications of Finite Groups. New York: Dover, 1961.Taylor, D. E. "Regular 2-Graphs." Proc. London Math. Soc. 35, 257-274, 1977.

Cite this as:

Weisstein, Eric W. "Gosset Graph." From MathWorld--A Wolfram Web Resource.

Subject classifications