Given a distance-regular graph with integers such that for any two vertices at distance , there are exactly neighbors of and neighbors of , the sequence

Bendito, E.; Carmona, A.; and Encinas, A. M. "Shortest Paths in Distance-Regular Graphs." Europ. J. Combin.21, 153-166,
2000.Biggs, N. L. Algebraic
Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press, 1993.Brouwer,
A. E.; Cohen, A. M.; and Neumaier, A. Distance-Regular
Graphs. New York: Springer-Verlag, 1989.Godsil, C. and Royle,
G. Algebraic
Graph Theory. New York: Springer-Verlag, p. 68, 2001.Koolen,
J. H.; Yu, K.; Liang, X.; Choi, H.; and Markowsky, G. "Non-Geometric Distance-Regular
Graphs of Diameter at Least 3 With Smallest Eigenvalue at Least ." 15 Nov 2023. https://arxiv.org/abs/2311.09001.van
Dam, E. R. and Haemers, W. H. "Spectral Characterizations of Some
Distance-Regular Graphs." J. Algebraic Combin.15, 189-202, 2003.