TOPICS
Search

Fatou's Theorems


Let f(theta) be Lebesgue integrable and let

 f(r,theta)=1/(2pi)int_(-pi)^pif(t)(1-r^2)/(1-2rcos(t-theta)+r^2)dt
(1)

be the corresponding Poisson integral. Then almost everywhere in -pi<=theta<=pi,

 lim_(r->0^-)f(r,theta)=f(theta).
(2)

Let

 F(z)=c_0+c_1z+c_2z^2+...+c_nz^n+...
(3)

be regular for |z|<1, and let the integral

 1/(2pi)int_(-pi)^pi|F(re^(itheta))|^2dtheta
(4)

be bounded for r<1. This condition is equivalent to the convergence of

 |c_0|^2+|c_1|^2+...+|c_n|^2+....
(5)

Then almost everywhere in -pi<=theta<=pi,

 lim_(r->0^-)F(re^(itheta))=F(e^(itheta)).
(6)

Furthermore, F(e^(itheta)) is measurable, |F(e^(itheta))|^2 is Lebesgue integrable, and the Fourier series of F(e^(itheta)) is given by writing z=e^(itheta).


Explore with Wolfram|Alpha

References

Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., p. 274, 1975.

Referenced on Wolfram|Alpha

Fatou's Theorems

Cite this as:

Weisstein, Eric W. "Fatou's Theorems." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FatousTheorems.html

Subject classifications