TOPICS
Search

Strong Pseudoprime


A strong pseudoprime to a base a is an odd composite number n with n-1=d·2^s (for d odd) for which either

 a^d=1 (mod n)
(1)

or

 a^(d·2^r)=-1 (mod n)
(2)

for some r=0, 1, ..., s-1 (Riesel 1994, p. 91). Note that Guy (1994, p. 27) restricts the definition of strong pseudoprimes to only those satisfying (1).

The definition is motivated by the fact that a Fermat pseudoprime n to the base b satisfies

 b^(n-1)-1=0 (mod n).
(3)

But since n is odd, it can be written n=2m+1, and

 b^(2m)-1=(b^m-1)(b^m+1)=0 (mod n).
(4)

If n is prime, it must divide at least one of the factors, but can't divide both because it would then divide their difference

 (b^m+1)-(b^m-1)=2.
(5)

Therefore,

 b^m=+/-1 (mod n),
(6)

so write n=2^at+1 to obtain

 b^(n-1)-1=(b^t-1)(b^t+1)(b^(2t)+1)...(b^(2^(a-1)t)+1).
(7)

If n divides exactly one of these factors but is composite, it is a strong pseudoprime. A composite number is a strong pseudoprime to at most 1/4 of all bases less than itself (Monier 1980, Rabin 1980). The strong pseudoprimes provide the basis for Miller's primality test and Rabin-Miller strong pseudoprime test.

A strong pseudoprime to the base a is also an Euler pseudoprime to the base a (Pomerance et al. 1980). The strong pseudoprimes include some Euler pseudoprimes, Fermat pseudoprimes, and Carmichael numbers.

The following table lists the first few pseudoprimes to a number of small bases.

bOEISb-strong pseudoprimes
2A0012622047, 3277, 4033, 4681, 8321, ...
3A020229121, 703, 1891, 3281, 8401, 8911, ...
4A020230341, 1387, 2047, 3277, 4033, 4371, ...
5A020231781, 1541, 5461, 5611, 7813, ...
6A020232217, 481, 1111, 1261, 2701, ...
7A02023325, 325, 703, 2101, 2353, 4525, ...
8A0202349, 65, 481, 511, 1417, 2047, ...
9A02023591, 121, 671, 703, 1541, 1729, ...

The number of strong 2-pseudoprimes less than 10^3, 10^4, ... are 0, 5, 16, 46, 162, ... (OEIS A055552). Note that Guy's (1994, p. 27) definition gives only the subset 2047, 4681, 15841, 42799, 52633, 90751, ..., giving counts inconsistent with those in Guy's table.

The strong k-pseudoprime test for k=2, 3, 5 correctly identifies all primes below 2.5×10^(10) with only 13 exceptions, and if 7 is added, then the only exception less than 2.5×10^(10) is 3215031751. Jaeschke (1993) showed that there are only 101 strong pseudoprimes for the bases 2, 3, and 5 less than 10^(12), nine if 7 is added, and none if 11 is added. Also, the bases 2, 13, 23, and 1662803 have no exceptions up to 10^(12).

If n is composite, then there is a base for which n is not a strong pseudoprime. There are therefore no "strong Carmichael numbers." Let psi_k denote the smallest strong pseudoprime to all of the first k primes taken as bases (i.e., the smallest odd number for which the Rabin-Miller strong pseudoprime test on bases less than or equal to the kth prime p_k fails). Jaeschke (1993) computed psi_k from k=5 to 8 and gave upper bounds for k=9 to 11.

psi_1=2047
(8)
psi_2=1373653
(9)
psi_3=25326001
(10)
psi_4=3215031751
(11)
psi_5=2152302898747
(12)
psi_6=3474749660383
(13)
psi_7=341550071728321
(14)
psi_8=341550071728321
(15)
psi_9<=3825123056546413051
(16)
psi_(10)<=3825123056546413051
(17)
psi_(11)<=3825123056546413051
(18)

(OEIS A014233), where the bounds for psi_9, psi_(10), and psi_(11) were determined by Zhang and Tang (2003). A seven-step test utilizing older bounds on these results (Riesel 1994) allows all numbers less than 3.4×10^(14) to be tested.

Zhang (2001, 2002, 2005, 2006, 2007) conjectured that

psi_9=3825123056546413051
(19)
psi_(10)=3825123056546413051
(20)
psi_(11)=3825123056546413051
(21)
psi_(12)=318665857834031151167461
(22)
psi_(13)=3317044064679887385961981
(23)
psi_(14)=6003094289670105800312596501
(24)
psi_(15)=59276361075595573263446330101
(25)
psi_(16)=564132928021909221014087501701
(26)
psi_(17)=564132928021909221014087501701
(27)
psi_(18)=1543267864443420616877677640751301
(28)
psi_(19)=1543267864443420616877677640751301
(29)
psi_(20)>10^(36).
(30)

The Baillie-PSW primality test is a test based on a combination of strong pseudoprimes and Lucas pseudoprimes proposed by Pomerance et al. (Pomerance et al. 1980, Pomerance 1984).


See also

Baillie-PSW Primality Test, Carmichael Number, Miller's Primality Test, Poulet Number, Pseudoprime, Rabin-Miller Strong Pseudoprime Test, Rotkiewicz Theorem, Strong Elliptic Pseudoprime, Strong Lucas Pseudoprime

Explore with Wolfram|Alpha

References

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, p. 57, 2007.Baillie, R. and Wagstaff, S. "Lucas Pseudoprimes." Math. Comput. 35, 1391-1417, 1980. http://mpqs.free.fr/LucasPseudoprimes.pdf.Guy, R. K. "Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes." §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 27-30, 1994.Jaeschke, G. "On Strong Pseudoprimes to Several Bases." Math. Comput. 61, 915-926, 1993.Monier, L. "Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms." Theor. Comput. Sci. 12, 97-108, 1980.Pinch, R. G. E. "The Pseudoprimes Up to 10^(13)." ftp://ftp.dpmms.cam.ac.uk/pub/PSP/.Pomerance, C. "Are There Counterexamples to the Baillie-PSW Primality Test?" 1984. http://www.pseudoprime.com/dopo.pdf.Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr. "The Pseudoprimes to 25·10^9." Math. Comput. 35, 1003-1026, 1980. http://mpqs.free.fr/ThePseudoprimesTo25e9.pdf.Rabin, M. O. "Probabilistic Algorithm for Testing Primality." J. Number Th. 12, 128-138, 1980.Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Basel: Birkhäuser, p. 92, 1994.Sloane, N. J. A. Sequences A001262, A014233, A020229, A020230, A020231, A020232, A020233, A020234, A020235, A055552, and A102483 in "The On-Line Encyclopedia of Integer Sequences."Zhang, Z. "Finding Strong Pseudoprimes to Several Bases." Math. Comput. 70, 863-872, 2001. http://www.ams.org/journal-getitem?pii=S0025-5718-00-01215-1.Zhang, Z. "A One-Parameter Quadratic-Base Version of the Baillie-PSW Probable Prime Test." Math. Comput. 71, 1699-1734, 2002. http://www.ams.org/journal-getitem?pii=S0025-5718-02-01424-2.Zhang, Z. "Finding C3-Strong Pseudoprimes." Math. Comput. 74, 1009-1024, 2005. http://www.ams.org/mcom/2005-74-250/S0025-5718-04-01693-X/home.html.Zhang, Z. "Notes on Some New Kinds of Pseudoprimes." Math. Comput. 75, 451-460, 2006.Zhang, Z. "Two Kinds of Strong Pseudoprimes up to 10^(36)." Math. Comput. 76, 2095-2107, 2007.Zhang, Z. and Tang, M. "Finding Strong Pseudoprimes to Several Bases, II." Math. Comput. 72, 2085-2097, 2003. http://www.ams.org/journal-getitem?pii=S0025-5718-03-01545-X.

Referenced on Wolfram|Alpha

Strong Pseudoprime

Cite this as:

Weisstein, Eric W. "Strong Pseudoprime." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/StrongPseudoprime.html

Subject classifications