A catenary of revolution. The catenoid and plane are the only surfaces
of revolution which are also minimal surfaces.
The catenoid can be given by the parametric equations
where
.
The line element is
 |
(4)
|
The first fundamental form has coefficients
and the second fundamental form has coefficients
The principal curvatures are
The mean curvature of the catenoid is
 |
(13)
|
and the Gaussian curvature is
 |
(14)
|
The helicoid can be continuously deformed into a catenoid with
by the transformation
where
corresponds to a helicoid
and
to a catenoid.
This deformation is illustrated on the cover of issue 2, volume 2 of The Mathematica
Journal.
See also
Catenary,
Costa Minimal Surface,
Helicoid,
Minimal
Surface,
Surface of Revolution
Explore with Wolfram|Alpha
References
do Carmo, M. P. "The Catenoid." §3.5A in Mathematical
Models from the Collections of Universities and Museums (Ed. G. Fischer).
Braunschweig, Germany: Vieweg, p. 43, 1986.Fischer, G. (Ed.). Plate
90 in Mathematische
Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig,
Germany: Vieweg, p. 86, 1986.Geometry Center. "The Catenoid."
http://www.geom.umn.edu/zoo/diffgeom/surfspace/catenoid/.GRAPE.
"Catenoid." http://www-sfb256.iam.uni-bonn.de/grape/EXAMPLES/AMANDUS/catenoid.html.GRAPE.
"Catenoid-Helicoid Deformation." http://www-sfb256.iam.uni-bonn.de/grape/EXAMPLES/AMANDUS/cathel.html.Gray,
A. "The Catenoid." §20.4 Modern
Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca
Raton, FL: CRC Press, pp. 467-469, 1997.JavaView. "Classic
Surfaces from Differential Geometry: Catenoid/Helicoid." http://www-sfb288.math.tu-berlin.de/vgp/javaview/demo/surface/common/PaSurface_CatenoidHelicoid.html.Meusnier,
J. B. "Mémoire sur la courbure des surfaces." Mém.
des savans étrangers 10 (lu 1776), 477-510, 1785.Ogawa,
A. "Helicatenoid." Mathematica J. 2, 21, 1992.Osserman,
R. A
Survey of Minimal Surfaces. New York: Dover, p. 18 1986.Steinhaus,
H. Mathematical
Snapshots, 3rd ed. New York: Dover, pp. 247-249, 1999.
Cite this as:
Weisstein, Eric W. "Catenoid." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Catenoid.html
Subject classifications