TOPICS
Search

Catacaustic


A catacaustic is a curve that is the envelope of rays emanating from a specified point (or a point at infinite distance producing parallel rays) for a given mirror shape. The point from which the rays emanate is called the radiant point. The catacaustic is an evolute of the orthotomic (Lawrence 1972, p. 60).

The following table lists the catacaustics for some common curves, omitting the incorrect catacaustic listed for the quadrifolium (Lawrence 1972, p. 207).


See also

Atzema Spiral, Caustic, Diacaustic

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Borovikov, V. A. and Kinber, B. Y. Geometrical Theory of Diffraction. London: Institute of Electrical Engineering, 1994.Bruce, J. W.; Giblin; P. G.; and Gibson, C. G. Amer. Math. Monthly 88, 651, 1981.Bruce, J. W.; Giblin, P. G.; and Gibson, C. G. Topology 21, 179, 1982.Bruce, J. W.; Giblin, P. G.; and Gibson, C. G. Proc. Symposia Pure Math. 40/1, 179, 1983.Cornbleet, S. Microwave and Geometrical Optics. London: Academic Press, 1994.Ehlers, J. and Newman, E. T. J. Math. Phys. 41, 3344, 2000.Georgiou, C.; Hasanis, T.; Koutroufiotis, D. Geom. Dedicata 28, 153, 1988.Giblin, P. J. and Kingston, J. G. Quart. J. Math Oxford 37, 17, 1986.Hairer, E. and Wanner, G. Analysis by Its History. New York: Springer-Verlag, 1996.Hartman, P. and Valentine, F. A. Duke Math. J. 26, 373, 1959.Knill, O. Elem. Math. 53, 89, 1998.Lawrence, J. D. A Catalog of Special Plane Curves. New York: Dover, pp. 60 and 207, 1972.Loe, B. L. and Beagley, N. Coll. Math. J. 28, 277, 1997.Porteous, I. R. Geometric Differentiation for the Intelligence of Curves and Surfaces. Cambridge, England: Cambridge University Press, 1994.Poston, T. and Stewart, I. Catastrophe Theory and Its Application. London: Pitman, 1978.Schupp, H. and Dabrock, H. Höhere Kurven. Mannheim, Germany: BI, 1995.Trott, M. The Mathematica GuideBook for Graphics. New York: Springer-Verlag, pp. 9-11, 2004. http://www.mathematicaguidebooks.org/.

Referenced on Wolfram|Alpha

Catacaustic

Cite this as:

Weisstein, Eric W. "Catacaustic." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Catacaustic.html

Subject classifications