The th
cabtaxi number is the smallest positive number that can be written in
ways as a sum of two (not necessarily positive) cubes.
The name derived from the taxicab number, which
is the smallest number representable in
ways as a sum of positive cubes. The first few are 1, 91, 728, 2741256, 6017193,
1412774811, 11302198488, 137513849003496, 424910390480793000, 933528127886302221000,
... (OEIS A047696), as listed below.
|
(1)
| |||
|
(2)
| |||
|
(3)
| |||
|
(4)
| |||
|
(5)
| |||
|
(6)
| |||
|
(7)
| |||
|
(8)
| |||
|
(9)
| |||
|
(10)
| |||
|
(11)
| |||
|
(12)
| |||
|
(13)
| |||
|
(14)
| |||
|
(15)
| |||
|
(16)
| |||
|
(17)
| |||
|
(18)
| |||
|
(19)
| |||
|
(20)
| |||
|
(21)
| |||
|
(22)
| |||
|
(23)
| |||
|
(24)
| |||
|
(25)
| |||
|
(26)
| |||
|
(27)
| |||
|
(28)
| |||
|
(29)
| |||
|
(30)
| |||
|
(31)
| |||
|
(32)
| |||
|
(33)
| |||
|
(34)
| |||
|
(35)
| |||
|
(36)
| |||
|
(37)
| |||
|
(38)
| |||
|
(39)
| |||
|
(40)
| |||
|
(41)
| |||
|
(42)
| |||
|
(43)
| |||
|
(44)
| |||
|
(45)
| |||
|
(46)
| |||
|
(47)
| |||
|
(48)
| |||
|
(49)
| |||
|
(50)
| |||
|
(51)
| |||
|
(52)
| |||
|
(53)
| |||
|
(54)
| |||
|
(55)
|
The 9th term was found by D. Moore (2005) and the 10th by Christian Boyer in 2006, the latter of which was independently verified by Hollerbach (2008).