The th
 cabtaxi number is the smallest positive number that can be written in 
 ways as a sum of two (not necessarily positive) cubes.
 The name derived from the taxicab number, which
 is the smallest number representable in 
 ways as a sum of positive cubes. The first few are 1, 91, 728, 2741256, 6017193,
 1412774811, 11302198488, 137513849003496, 424910390480793000, 933528127886302221000,
 ... (OEIS A047696), as listed below.
| 
(1)
 | |||
| 
(2)
 | |||
| 
(3)
 | |||
| 
(4)
 | |||
| 
(5)
 | |||
| 
(6)
 | |||
| 
(7)
 | |||
| 
(8)
 | |||
| 
(9)
 | |||
| 
(10)
 | |||
| 
(11)
 | |||
| 
(12)
 | |||
| 
(13)
 | |||
| 
(14)
 | |||
| 
(15)
 | |||
| 
(16)
 | |||
| 
(17)
 | |||
| 
(18)
 | |||
| 
(19)
 | |||
| 
(20)
 | |||
| 
(21)
 | |||
| 
(22)
 | |||
| 
(23)
 | |||
| 
(24)
 | |||
| 
(25)
 | |||
| 
(26)
 | |||
| 
(27)
 | |||
| 
(28)
 | |||
| 
(29)
 | |||
| 
(30)
 | |||
| 
(31)
 | |||
| 
(32)
 | |||
| 
(33)
 | |||
| 
(34)
 | |||
| 
(35)
 | |||
| 
(36)
 | |||
| 
(37)
 | |||
| 
(38)
 | |||
| 
(39)
 | |||
| 
(40)
 | |||
| 
(41)
 | |||
| 
(42)
 | |||
| 
(43)
 | |||
| 
(44)
 | |||
| 
(45)
 | |||
| 
(46)
 | |||
| 
(47)
 | |||
| 
(48)
 | |||
| 
(49)
 | |||
| 
(50)
 | |||
| 
(51)
 | |||
| 
(52)
 | |||
| 
(53)
 | |||
| 
(54)
 | |||
| 
(55)
 | 
The 9th term was found by D. Moore (2005) and the 10th by Christian Boyer in 2006, the latter of which was independently verified by Hollerbach (2008).
 
         
	    
	
    

