A braid with strands and components with positive crossings and negative crossings satisfies
where
is the unknotting number. While the second part
of the inequality was already known to be true (Boileau
and Weber, 1983, 1984) at the time the conjecture was proposed, the proof of the
entire conjecture was completed using results of Kronheimer and Mrowka on Milnor's
conjecture (and, independently, using the slice-Bennequin
inequality).
Bennequin, D. "L'instanton gordien (d'après P. B. Kronheimer et T. S. Mrowka)." Astérisque216,
233-277, 1993.Birman, J. S. and Menasco, W. W. "Studying
Links via Closed Braids. II. On a Theorem of Bennequin." Topology Appl.40,
71-82, 1991.Boileau, M. and Weber, C. "Le problème de J. Milnor
sur le nombre gordien des nœuds algébriques." Enseign. Math.30,
173-222, 1984.Boileau, M. and Weber, C. "Le problème de
J. Milnor sur le nombre gordien des nœuds algébriques." In
Knots, Braids and Singularities (Plans-sur-Bex, 1982). Geneva, Switzerland:
Monograph. Enseign. Math. Vol. 31, pp. 49-98, 1983.Cipra,
B. What's
Happening in the Mathematical Sciences, Vol. 2. Providence, RI: Amer.
Math. Soc., pp. 8-13, 1994.Kronheimer, P. B. "The Genus-Minimizing
Property of Algebraic Curves." Bull. Amer. Math. Soc.29, 63-69,
1993.Kronheimer, P. B. and Mrowka, T. S. "Gauge Theory
for Embedded Surfaces. I." Topology32, 773-826, 1993.Kronheimer,
P. B. and Mrowka, T. S. "Recurrence Relations and Asymptotics for
Four-Manifold Invariants." Bull. Amer. Math. Soc.30, 215-221,
1994.Menasco, W. W. "The Bennequin-Milnor Unknotting Conjectures."
C. R. Acad. Sci. Paris Sér. I Math.318, 831-836, 1994.