The unknotting number of a knot is the smallest number of times
the knot must be passed through
itself to untie it. Lower bounds can be computed using relatively straightforward
techniques, but it is in general difficult to determine exact values. Many unknotting
numbers can be determined from a knot's knot signature.
A knot with unknotting number 1 is a prime
knot (Scharlemann 1985). It is not always true that the unknotting number is
achieved in a projection with the minimal number of crossings.
The unknotting number is not additive for two combined knots (Brittenham and Hermiller 2025). In particular, for the combined torus knot and its mirror
image,
The following table is from Kirby (1997, pp. 88-89), with the values for 10-139 and 10-152 taken from Kawamura (1998). In the following table, Kirby's (1997, p. 88)
value
has been corrected to reflect the fact that
is only currently known to be 1 or 2 (Kawauchi 1996,
p. 271). The value
has been computed by Stoimenow (2002). The unknotting
numbers for 10-154 and 10-161 can be found using the slice-Bennequin
inequality (Stoimenow 1998).
Knots for which the unknotting number is not known are 10-11, 10-47, 10-51, 10-54, 10-61, 10-76, 10-77, 10-79, 10-100 (Cha and Livingston 2008).
0 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 1 | |||||||||
1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | |||||||||
1 | 2 | 1 | 2 | 2 | 2 | 2 | 3 | 2 | |||||||||
2 | 3 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | |||||||||
1 | 1 | 2 | 1 | 2 | 2 | ? | 2 | 2 | |||||||||
1 | 1 | 1 | ? | 2 | 1 | 3 | 1 | 3 | |||||||||
1 | 4 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | |||||||||
1 | 1 | 2 | 2 | 2 | 1 | 3 | 1 | 2 | |||||||||
3 | 3 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | |||||||||
1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |||||||||
2 | 2 | 3 | 2 | 3 | ? | 2 | 1 | ||||||||||
2 | 3 | 2 | 1 | ? | ? | 1 | 1 | ||||||||||
2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | ||||||||||
1 | 2 | 3 | 2 | 3 | ? | 2 | 4 | ||||||||||
1 | 3 | 1 | 2 | 2 | 3 | 2 | 2 | ||||||||||
1 | 3 | 2 | 2 | ? | 2 | 2 | 1 | ||||||||||
2 | 2 | 2 | 2 | 2 | 1 | 2 | 3 | ||||||||||
2 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | ||||||||||
2 | 3 | 2 | 2 | ? | 1 | 1 | 2 | ||||||||||
2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | ||||||||||
2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | ||||||||||
1 | 3 | 2 | 1 | 2 | 2 | 2 | 1 | ||||||||||
2 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | ||||||||||
1 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | ||||||||||
2 | 1 | 3 | 1 | 1 | 2 | 3 | 2 | ||||||||||
1 | 2 | 1 | 1 | ? | 1 | 2 | 2 | ||||||||||
2 | 1 | 3 | 1 | 2 | 2 | 2 | 4 | ||||||||||
1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | ||||||||||
1 | 2 | 2 | 2 | 2 | 2 | 4 | 3 | ||||||||||
2 | 1 | 2 | 2 | 2 | 1 | 2 | 2 |