TOPICS
Search

Gudermannian


GudermannianReal
Min Max
Powered by webMathematica

The Gudermannian function is the odd function denoted either gamma(x) or gd(x) which arises in the inverse equations for the Mercator projection. phi(y)=gd(y) expresses the latitude phi in terms of the vertical position y in this projection, so the Gudermannian function is defined by

gd(x)=int_0^x(dt)/(cosht)
(1)
=2tan^(-1)[tanh(1/2x)].
(2)

For real x, this definition is also equal to

gd(x)=tan^(-1)(sinhx)
(3)
=2tan^(-1)(e^x)-1/2pi.
(4)

The Gudermannian is implemented in the Wolfram Language as Gudermannian[z].

The derivative of the Gudermannian is

 d/(dz)gd(z)=sechz,
(5)

and its indefinite integral is

 intgd(z)dz=-1/2pix+i[Li_2(-ie^x)-Li_2(ie^x)],
(6)

where Li_2(z) is the dilogarithm.

It has Maclaurin series

 gd(x)=x-1/6x^3+1/(24)x^5-(61)/(5040)x^7+(277)/(72576)x^9-...
(7)

(OEIS A091912 and A136606).

The Gudermannian connects the trigonometric and hyperbolic functions via

sin(gdx)=tanhx
(8)
cos(gdx)=sechx
(9)
tan(gdx)=sinhx
(10)
cot(gdx)=cschx
(11)
sec(gdx)=coshx
(12)
csc(gdx)=cothx.
(13)

The Gudermannian is related to the exponential function by

e^x=sec(gdx)+tan(gdx)
(14)
=tan(1/4pi+1/2gdx)
(15)
=(1+sin(gdx))/(cos(gdx))
(16)

(Beyer 1987, p. 164; Zwillinger 1995, p. 485).

Other fundamental identities are

 tanh(1/2x)=tan(1/2gdx)
(17)
 gd(ix)=igd^(-1)x.
(18)

(Zwillinger 1995, p. 485).

If gd(x+iy)=alpha+ibeta, then

tanalpha=(sinhx)/(cosy)
(19)
tanhbeta=(siny)/(coshx)
(20)
tanhx=(sinalpha)/(coshbeta)
(21)
tany=(sinhbeta)/(cosalpha)
(22)

(Beyer 1987, p. 164; Zwillinger 1995, p. 530), where the last identity has been corrected.

An additional identity is given by

 tanhxtany=tanalphatanhbeta
(23)

(M. Somos, pers. comm., Apr. 15, 2006).

GudermannianReImAbs
Min Max
Re
Im Powered by webMathematica

The Gudermannian function can also be extended to the complex plane, as illustrated above.


See also

Exponential Function, Hyperbolic Functions, Hyperbolic Secant, Inverse Gudermannian, Mercator Projection, Secant, Tractrix, Trigonometric Functions

Explore with Wolfram|Alpha

References

Beyer, W. H. "Gudermannian Function." CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 164, 1987.Robertson, J. S. "Gudermann and the Simple Pendulum." College Math. J. 28, 271-276, 1997.Sloane, N. J. A. Sequences A091912 and A136606 in "The On-Line Encyclopedia of Integer Sequences."Zwillinger, D. (Ed.). "Gudermannian Function." §6.9 in CRC Standard Mathematical Tables and Formulae, 31st ed. Boca Raton, FL: CRC Press, pp. 530-532, 1995.

Referenced on Wolfram|Alpha

Gudermannian

Cite this as:

Weisstein, Eric W. "Gudermannian." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Gudermannian.html

Subject classifications