Exponential Function
The exponential function is the entire function
defined by
 |
(1)
|
where e is the solution of the equation
so that
.
is also the unique solution of the equation
with
.
The exponential function is implemented in the Wolfram
Language as Exp[z].
It satisfies the identity
 |
(2)
|
If
,
 |
(3)
|
The exponential function satisfies the identities
where
is the Gudermannian
(Beyer 1987, p. 164; Zwillinger 1995, p. 485).
The exponential function has Maclaurin series
 |
(8)
|
and satisfies the limit
 |
(9)
|
If
 |
(10)
|
then
The exponential function has continued fraction
 |
(14)
|
(Wall 1948, p. 348).
The above plot shows the function
(Trott 2004,
pp. 165-166).
Integrals involving the exponential function include
(Borwein et al. 2004, p. 55).
SEE ALSO: Cis,
Complex Exponentiation,
e,
Euler
Formula,
Exponent,
Exponent
Laws,
Exponential Decay,
Exponential
Growth,
Exponential Ramp,
Exponentially
Decreasing Function,
Exponentially
Increasing Function,
Fourier
Transform--Exponential Function,
Gudermannian,
Phasor,
Power,
Sigmoid
Function
RELATED WOLFRAM SITES: http://functions.wolfram.com/ElementaryFunctions/Exp/
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Exponential Function." §4.2 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 69-71, 1972.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 217,
1987.
Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters,
2004.
Finch, S. "Linear Independence of Exponential Functions." http://algo.inria.fr/csolve/sstein.html.
Fischer, G. (Ed.). Plates 127-128 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig,
Germany: Vieweg, pp. 124-125, 1986.
Krantz, S. G. "The Exponential and Applications." §1.2 in Handbook
of Complex Variables. Boston, MA: Birkhäuser, pp. 7-12, 1999.
Spanier, J. and Oldham, K. B. "The Exponential Function
"
and "Exponentials of Powers
."
Chs. 26-27 in An
Atlas of Functions. Washington, DC: Hemisphere, pp. 233-261, 1987.
Trott, M. "Elementary Transcendental Functions." §2.2.3 in The Mathematica GuideBook for Programming. New York: Springer-Verlag,
2004. http://www.mathematicaguidebooks.org/.
Wall, H. S. Analytic
Theory of Continued Fractions. New York: Chelsea, 1948.
Yates, R. C. "Exponential Curves." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards,
pp. 86-97, 1952.
Zwillinger, D. (Ed.). CRC
Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, 1995.
Referenced on Wolfram|Alpha:
Exponential Function
CITE THIS AS:
Weisstein, Eric W. "Exponential Function."
From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/ExponentialFunction.html