Dilogarithm
The dilogarithm
is a special case of the polylogarithm
for
. Note that the
notation
is unfortunately similar to that
for the logarithmic integral
. There are
also two different commonly encountered normalizations for the
function,
both denoted
, and one of which is known as the
Rogers L-function.
The dilogarithm is implemented in the Wolfram Language as PolyLog[2,
z].
The dilogarithm can be defined by the sum
 |
(1)
|
or the integral
 |
(2)
|

Plots of
in the complex
plane are illustrated above.
The major functional equations for the dilogarithm are given by
A complete list of
which can be evaluated in closed
form is given by
where
is the golden
ratio (Lewin 1981, Bailey et al. 1997; Borwein et al. 2001).
There are several remarkable identities involving the dilogarithm function. Ramanujan gave the identities
 |
(20)
|
 |
(21)
|
 |
(22)
|
 |
(23)
|
 |
(24)
|
 |
(25)
|
 |
(26)
|
(Berndt 1994, Gordon and McIntosh 1997) in addition to the identity for
,
and Bailey et al. (1997) showed that
 |
(27)
|
Lewin (1991) gives 67 dilogarithm identities (known as "ladders"), and Bailey and Broadhurst (1999, 2001) found the amazing additional dilogarithm identity
 |
(28)
|
where
is the largest positive root of the polynomial in Lehmer's
Mahler measure problem and
is the Riemann zeta function.
SEE ALSO: Abel's Duplication Formula,
Abel's Functional Equation,
Clausen Function,
Inverse
Tangent Integral,
L-Algebraic Number,
Legendre's Chi-Function,
Logarithm,
Polylogarithm,
Rogers
L-Function,
Spence's Function,
Spence's
Integral,
Trilogarithm,
Watson's
Identities
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Dilogarithm." §27.7 in Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 1004-1005, 1972.
Andrews, G. E.; Askey, R.; and Roy, R. Special
Functions. Cambridge, England: Cambridge University Press, 1999.
Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913,
1997.
Bailey, D. H. and Broadhurst, D. J. "A Seventeenth-Order Polylogarithm
Ladder." 20 Jun 1999. http://arxiv.org/abs/math.CA/9906134.
Bailey, D. H. and Broadhurst, D. J. "Parallel Integer Relation Detection:
Techniques and Applications." Math. Comput. 70, 1719-1736, 2001.
Berndt, B. C. Ramanujan's
Notebooks, Part IV. New York: Springer-Verlag, pp. 323-326, 1994.
Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J.; and Lisonek, P. "Special Values of Multidimensional Polylogarithms." Trans. Amer. Math.
Soc. 353, 907-941, 2001.
Bytsko, A. G. "Fermionic Representations for Characters of
,
,
and
Minimal Models and Related Dilogarithm and
Rogers-Ramanujan-Type Identities." J. Phys. A: Math. Gen. 32,
8045-8058, 1999.
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. "Euler's Dilogarithm." §1.11.1 in Higher
Transcendental Functions, Vol. 1. New York: Krieger, pp. 31-32,
1981.
Gordon, B. and McIntosh, R. J. "Algebraic Dilogarithm Identities."
Ramanujan J. 1, 431-448, 1997.
Kirillov, A. N. "Dilogarithm Identities." Progr. Theor. Phys. Suppl. 118,
61-142, 1995.
Lewin, L. Dilogarithms
and Associated Functions. London: Macdonald, 1958.
Lewin, L. Polylogarithms
and Associated Functions. New York: North-Holland, 1981.
Lewin, L. "The Dilogarithm in Algebraic Fields." J. Austral. Math. Soc.
Ser. A 33, 302-330, 1982.
Lewin, L. (Ed.). Structural
Properties of Polylogarithms. Providence, RI: Amer. Math. Soc., 1991.
Nielsen, N. "Der Eulersche Dilogarithmus und seine Verallgemeinerungen." Nova Acta Leopoldina, Abh. der Kaiserlich Leopoldinisch-Carolinischen Deutschen
Akad. der Naturforsch. 90, 121-212, 1909.
Watson, G. N. "A Note on Spence's Logarithmic Transcendent." Quart.
J. Math. Oxford Ser. 8, 39-42, 1937.
Referenced on Wolfram|Alpha:
Dilogarithm
CITE THIS AS:
Weisstein, Eric W. "Dilogarithm." From
MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Dilogarithm.html