Search Results for ""
1421 - 1430 of 13135 for www.bong88.com login %...Search Results
![](/common/images/search/spacer.gif)
Assume that f is a nonnegative real function on [0,infty) and that the two integrals int_0^inftyx^(p-1-lambda)[f(x)]^pdx (1) int_0^inftyx^(q-1+mu)[f(x)]^qdx (2) exist and are ...
The Carlson elliptic integrals, also known as the Carlson symmetric forms, are a standard set of canonical elliptic integrals which provide a convenient alternative to ...
If f(z) is regular and of the form O(e^(k|z|)) where k<pi, for R[z]>=0, and if f(z)=0 for z=0, 1, ..., then f(z) is identically zero.
Consider a quadratic equation x^2-sx+p=0 where s and p denote signed lengths. The circle which has the points A=(0,1) and B=(s,p) as a diameter is then called the Carlyle ...
A number n satisfies the Carmichael condition iff (p-1)|(n/p-1) for all prime divisors p of n. This is equivalent to the condition (p-1)|(n-1) for all prime divisors p of n.
There are two definitions of the Carmichael function. One is the reduced totient function (also called the least universal exponent function), defined as the smallest integer ...
A Carmichael number is an odd composite number n which satisfies Fermat's little theorem a^(n-1)-1=0 (mod n) (1) for every choice of a satisfying (a,n)=1 (i.e., a and n are ...
A finite, increasing sequence of integers {a_1,...,a_m} such that (a_i-1)|(a_1...a_(m-1)) for i=1, ..., m, where m|n indicates that m divides n. A Carmichael sequence has ...
Carmichael's conjecture asserts that there are an infinite number of Carmichael numbers. This was proven by Alford et al. (1994).
If a and n are relatively prime so that the greatest common divisor GCD(a,n)=1, then a^(lambda(n))=1 (mod n), where lambda is the Carmichael function.
![](/common/images/search/spacer.gif)
...