Carmichael's Conjecture

Carmichael's conjecture asserts that there are an infinite number of Carmichael numbers. This was proven by Alford et al. (1994).

See also

Carmichael Number, Carmichael's Totient Function Conjecture

Explore with Wolfram|Alpha


Alford, W. R.; Granville, A.; and Pomerance, C. "There Are Infinitely Many Carmichael Numbers." Ann. Math. 139, 703-722, 1994.Cipra, B. What's Happening in the Mathematical Sciences, Vol. 1. Providence, RI: Amer. Math. Soc., 1993.Guy, R. K. "Carmichael's Conjecture." §B39 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 94, 1994.Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr. "The Pseudoprimes to 25·10^9." Math. Comput. 35, 1003-1026, 1980.Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 29-31, 1989.Schlafly, A. and Wagon, S. "Carmichael's Conjecture on the Euler Function is Valid Below 10^(10000000)." Math. Comput. 63, 415-419, 1994.

Referenced on Wolfram|Alpha

Carmichael's Conjecture

Cite this as:

Weisstein, Eric W. "Carmichael's Conjecture." From MathWorld--A Wolfram Web Resource.

Subject classifications