Search Results for ""
411 - 420 of 1489 for vector productSearch Results
Let A denote an R-algebra, so that A is a vector space over R and A×A->A (1) (x,y)|->x·y, (2) where x·y is vector multiplication which is assumed to be bilinear. Now define ...
In functional analysis, the Banach-Alaoglu theorem (also sometimes called Alaoglu's theorem) is a result which states that the norm unit ball of the continuous dual X^* of a ...
Let a, b, and c be the lengths of the legs of a triangle opposite angles A, B, and C. Then the law of cosines states a^2 = b^2+c^2-2bccosA (1) b^2 = a^2+c^2-2accosB (2) c^2 = ...
A bilinear form on a real vector space is a function b:V×V->R that satisfies the following axioms for any scalar alpha and any choice of vectors v,w,v_1,v_2,w_1, and w_2. 1. ...
Given a plane ax+by+cz+d=0 (1) and a point x_0=(x_0,y_0,z_0), the normal vector to the plane is given by v=[a; b; c], (2) and a vector from the plane to the point is given by ...
The Wallis formula follows from the infinite product representation of the sine sinx=xproduct_(n=1)^infty(1-(x^2)/(pi^2n^2)). (1) Taking x=pi/2 gives ...
The norm of a mathematical object is a quantity that in some (possibly abstract) sense describes the length, size, or extent of the object. Norms exist for complex numbers ...
The first few values of product_(k=1)^(n)k! (known as a superfactorial) for n=1, 2, ... are given by 1, 2, 12, 288, 34560, 24883200, ... (OEIS A000178). The first few ...
If {a_j} subset= D(0,1) (with possible repetitions) satisfies sum_(j=1)^infty(1-|a_j|)<=infty, where D(0,1) is the unit open disk, and no a_j=0, then there is a bounded ...
The amazing polynomial identity communicated by Euler in a letter to Goldbach on April 12, 1749 (incorrectly given as April 15, 1705--before Euler was born--in Conway and Guy ...
...