Search Results for ""
8871 - 8880 of 13135 for triangle geometrySearch Results
There are so many theorems due to Fermat that the term "Fermat's theorem" is best avoided unless augmented by a description of which theorem of Fermat is under discussion. ...
A self-avoiding polygon containing three corners of its minimal bounding rectangle. The anisotropic area and perimeter generating function G(x,y) and partial generating ...
The sequence of six 9s which begins at the 762nd decimal place of pi, pi=3.14159...134999999_()_(six 9s)837... (Wells 1986, p. 51). The positions of the first occurrences of ...
A fiber of a map f:X->Y is the preimage of an element y in Y. That is, f^(-1)(y)={x in X:f(x)=y}. For instance, let X and Y be the complex numbers C. When f(z)=z^2, every ...
A fibered category F over a topological space X consists of 1. a category F(U) for each open subset U subset= X, 2. a functor i^*:F(U)->F(V) for each inclusion i:V↪U, and 3. ...
Let F and G be fibered categories over a topological space X. A morphism phi:F->G of fibered categories consists of: 1. a functor phi(U):F->G(U) for each open subset U ...
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) n!_F. It is given by the infinite product ...
Let psi = 1+phi (1) = 1/2(3+sqrt(5)) (2) = 2.618033... (3) (OEIS A104457), where phi is the golden ratio, and alpha = lnphi (4) = 0.4812118 (5) (OEIS A002390). Define the ...
The Fibonacci Q-matrix is the matrix defined by Q=[F_2 F_1; F_1 F_0]=[1 1; 1 0], (1) where F_n is a Fibonacci number. Then Q^n=[F_(n+1) F_n; F_n F_(n-1)] (2) (Honsberger ...
The fibonorial n!_F, also called the Fibonacci factorial, is defined as n!_F=product_(k=1)^nF_k, where F_k is a Fibonacci number. For n=1, 2, ..., the first few fibonorials ...
...
View search results from all Wolfram sites (20519 matches)

