Search Results for ""
831 - 840 of 1924 for sum over paths FeynmanSearch Results
Some authors define a general Airy differential equation as y^('')+/-k^2xy=0. (1) This equation can be solved by series solution using the expansions y = ...
A series of the form sum_(n=0)^inftya_nJ_(nu+n)(z), (1) where nu is a real and J_(nu+n)(z) is a Bessel function of the first kind. Special cases are ...
The algebraic identity (sum_(i=1)^na_ic_i)(sum_(i=1)^nb_id_i)-(sum_(i=1)^na_id_i)(sum_(i=1)^nb_ic_i) =sum_(1<=i<j<=n)(a_ib_j-a_jb_i)(c_id_j-c_jd_i). (1) Letting c_i=a_i and ...
Let there be N_i observations of the ith phenomenon, where i=1, ..., p and N = sumN_i (1) y^__i = 1/(N_i)sum_(alpha)y_(ialpha) (2) y^_ = 1/Nsum_(i)sum_(alpha)y_(ialpha). (3) ...
sum_(1<=k<=n)(n; k)((-1)^(k-1))/(k^m)=sum_(1<=i_1<=i_2<=...<=i_m<=n)1/(i_1i_2...i_m), (1) where (n; k) is a binomial coefficient (Dilcher 1995, Flajolet and Sedgewick 1995, ...
The sine function sinx is one of the basic functions encountered in trigonometry (the others being the cosecant, cosine, cotangent, secant, and tangent). Let theta be an ...
Watson (1939) considered the following three triple integrals, I_1 = 1/(pi^3)int_0^piint_0^piint_0^pi(dudvdw)/(1-cosucosvcosw) (1) = (4[K(1/2sqrt(2))]^2)/(pi^2) (2) = ...
An alternating sign matrix is a matrix of 0s, 1s, and -1s in which the entries in each row or column sum to 1 and the nonzero entries in each row and column alternate in ...
If, for n>=0, beta_n=sum_(r=0)^n(alpha_r)/((q;q)_(n-r)(aq;q)_(n+r)), (1) then beta_n^'=sum_(r=0)^n(alpha_r^')/((q;q)_(n-r)(aq;q)_(n+r)), (2) where alpha_r^' = ...
Given a set of n+1 control points P_0, P_1, ..., P_n, the corresponding Bézier curve (or Bernstein-Bézier curve) is given by C(t)=sum_(i=0)^nP_iB_(i,n)(t), where B_(i,n)(t) ...
...
View search results from all Wolfram sites (33496 matches)

