TOPICS
Search

Search Results for ""


1341 - 1350 of 1924 for sum over paths FeynmanSearch Results
If f(x) is an odd function, then a_n=0 and the Fourier series collapses to f(x)=sum_(n=1)^inftyb_nsin(nx), (1) where b_n = 1/piint_(-pi)^pif(x)sin(nx)dx (2) = ...
_2F_1(-1/2,-1/2;1;h^2) = sum_(n=0)^(infty)(1/2; n)^2h^(2n) (1) = 1+1/4h^2+1/(64)h^4+1/(256)h^6+... (2) (OEIS A056981 and A056982), where _2F_1(a,b;c;x) is a hypergeometric ...
In 1757, V. Riccati first recorded the generalizations of the hyperbolic functions defined by F_(n,r)^alpha(x)=sum_(k=0)^infty(alpha^k)/((nk+r)!)x^(nk+r), (1) for r=0, ..., ...
A number given by the generating function (2t)/(e^t+1)=sum_(n=1)^inftyG_n(t^n)/(n!). (1) It satisfies G_1=1, G_3=G_5=G_7=...=0, and even coefficients are given by G_(2n) = ...
The geometric distribution is a discrete distribution for n=0, 1, 2, ... having probability density function P(n) = p(1-p)^n (1) = pq^n, (2) where 0<p<1, q=1-p, and ...
A finite, increasing sequence of integers {n_1,...,n_m} such that sum_(i=1)^m1/(n_i)-product_(i=1)^m1/(n_i) in N. A sequence is a Giuga sequence iff it satisfies ...
The identity PVint_(-infty)^inftyF(phi(x))dx=PVint_(-infty)^inftyF(x)dx (1) holds for any integrable function F(x) and phi(x) of the form ...
An algorithm for finding closed form hypergeometric identities. The algorithm treats sums whose successive terms have ratios which are rational functions. Not only does it ...
The inhomogeneous Helmholtz differential equation is del ^2psi(r)+k^2psi(r)=rho(r), (1) where the Helmholtz operator is defined as L^~=del ^2+k^2. The Green's function is ...
The Griewank function is a function widely used to test the convergence of optimization functions. The Griewank function of order n is defined by ...
1 ... 132|133|134|135|136|137|138 ... 193 Previous Next

...