Search Results for ""
51 - 60 of 92 for spectral abscissaSearch Results

An exact sequence is a sequence of maps alpha_i:A_i->A_(i+1) (1) between a sequence of spaces A_i, which satisfies Im(alpha_i)=Ker(alpha_(i+1)), (2) where Im denotes the ...
The first Zagreb index for a graph with vertex count n and vertex degrees d_i for i=1, ..., n is defined by Z_1=sum_(i=1)^nd_i^2. The notations Z_1 (e.g., Lin et al. 2023) ...
For any nonzero lambda in C, either 1. The equation Tv-lambdav=0 has a nonzero solution v, or 2. The equation Tv-lambdav=f has a unique solution v for any function f. In the ...
The Hadamard product is a representation for the Riemann zeta function zeta(s) as a product over its nontrivial zeros rho, ...
Given a distance-regular graph G with integers b_i,c_i,i=0,...,d such that for any two vertices x,y in G at distance i=d(x,y), there are exactly c_i neighbors of y in ...
The local McLaughlin graph is the graph on 162 vertices and 4536 edges obtained from the McLaughlin graph by vertex deletion of a single vertex and its neighbors, making it ...
The Lorentzian function is the singly peaked function given by L(x)=1/pi(1/2Gamma)/((x-x_0)^2+(1/2Gamma)^2), (1) where x_0 is the center and Gamma is a parameter specifying ...
The natural norm induced by the L1-norm is called the maximum absolute column sum norm and is defined by ||A||_1=max_(j)sum_(i=1)^n|a_(ij)| for a matrix A. This matrix norm ...
Let T be a linear operator on a separable Hilbert space. The spectrum sigma(T) of T is the set of lambda such that (T-lambdaI) is not invertible on all of the Hilbert space, ...
The Randić energy of a graph is defined as the graph energy of its Randić matrix, i.e., the sum of the absolute values of the eigenvalues of its Randić matrix.

...