Search Results for ""
8611 - 8620 of 13135 for science historySearch Results
An equation proposed by Lambert (1758) and studied by Euler in 1779. x^alpha-x^beta=(alpha-beta)vx^(alpha+beta). (1) When alpha->beta, the equation becomes lnx=vx^beta, (2) ...
The ordinary differential equation (1) (Byerly 1959, p. 255). The solution is denoted E_m^p(x) and is known as an ellipsoidal harmonic of the first kind, or Lamé function. ...
For n>=1, let u and v be integers with u>v>0 such that the Euclidean algorithm applied to u and v requires exactly n division steps and such that u is as small as possible ...
An approximation for the gamma function Gamma(z+1) with R[z]>0 is given by Gamma(z+1)=sqrt(2pi)(z+sigma+1/2)^(z+1/2)e^(-(z+sigma+1/2))sum_(k=0)^inftyg_kH_k(z), (1) where ...
Writing a Fourier series as f(theta)=1/2a_0+sum_(n=1)^(m-1)sinc((npi)/(2m))[a_ncos(ntheta)+b_nsin(ntheta)], where m is the last term, reduces the Gibbs phenomenon. The ...
The Landau-Mignotte bound, also known as the Mignotte bound, is used in univariate polynomial factorization to determine the number of Hensel lifting steps needed. It gives ...
Let F be the set of complex analytic functions f defined on an open region containing the closure of the unit disk D={z:|z|<1} satisfying f(0)=0 and df/dz(0)=1. For each f in ...
Landau (1911) proved that for any fixed x>1, sum_(0<|I[rho]|<=T)x^rho=-T/(2pi)Lambda(x)+O(lnT) as T->infty, where the sum runs over the nontrivial Riemann zeta function zeros ...
The Lehmer-Mahler is the following integral representation for the Legendre polynomial P_n(x): P_n(costheta) = 1/piint_0^pi(costheta+isinthetacosphi)^ndphi (1) = ...
An integral transform which is often written as an ordinary Laplace transform involving the delta function. The Laplace transform and Dirichlet series are special cases of ...
...
View search results from all Wolfram sites (203459 matches)

