TOPICS
Search

Lanczos sigma Factor


Writing a Fourier series as

 f(theta)=1/2a_0+sum_(n=1)^(m-1)sinc((npi)/(2m))[a_ncos(ntheta)+b_nsin(ntheta)],

where m is the last term, reduces the Gibbs phenomenon. The sinc(x) terms are the known as the Lanczos sigma factors. Note that (Acton 1990, p. 228) incorrectly lists the upper index of the sum as m, while Hamming (1986, p. 535) gives the correct form reproduced above.


See also

Fourier Series, Gibbs Phenomenon, Sinc Function

Explore with Wolfram|Alpha

References

Acton, F. S. Numerical Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., p. 228, 1990.Hamming, R. W. "Lanczos' sigma Factors" and "The sigma Factors in the General Case." §32.6 and 32.7 in Numerical Methods for Scientists and Engineers, 2nd ed. New York: Dover, pp. 534-536, 1986.Lanczos, C. Applied Analysis. Princeton, NJ: Van Nostrand, 1956.

Referenced on Wolfram|Alpha

Lanczos sigma Factor

Cite this as:

Weisstein, Eric W. "Lanczos sigma Factor." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LanczosSigmaFactor.html

Subject classifications

Find out if you already have access to Wolfram tech through your organization
×