TOPICS
Search

Search Results for ""


1571 - 1580 of 13135 for science historySearch Results
The inverse erf function is the inverse function erf^(-1)(z) of the erf function erf(x) such that erf(erf^(-1)(x)) = x (1) erf^(-1)(erf(x)) = x, (2) with the first identity ...
Given a function f(x), its inverse f^(-1)(x) is defined by f(f^(-1)(x))=f^(-1)(f(x))=x. (1) Therefore, f(x) and f^(-1)(x) are reflections about the line y=x. In the Wolfram ...
The variable phi (also denoted am(u,k)) used in elliptic functions and elliptic integrals is called the amplitude (or Jacobi amplitude). It can be defined by phi = am(u,k) ...
The Jacobi symbol, written (n/m) or (n/m) is defined for positive odd m as (n/m)=(n/(p_1))^(a_1)(n/(p_2))^(a_2)...(n/(p_k))^(a_k), (1) where m=p_1^(a_1)p_2^(a_2)...p_k^(a_k) ...
Given a set y=f(x) of n equations in n variables x_1, ..., x_n, written explicitly as y=[f_1(x); f_2(x); |; f_n(x)], (1) or more explicitly as {y_1=f_1(x_1,...,x_n); |; ...
The problem of determining how many nonattacking knights K(n) can be placed on an n×n chessboard. For n=8, the solution is 32 (illustrated above). In general, the solutions ...
A tree with its nodes labeled. The number of labeled trees on n nodes is n^(n-2), the first few values of which are 1, 1, 3, 16, 125, 1296, ... (OEIS A000272). Cayley (1889) ...
Lagrange's identity is the algebraic identity (sum_(k=1)^na_kb_k)^2=(sum_(k=1)^na_k^2)(sum_(k=1)^nb_k^2)-sum_(1<=k<j<=n)(a_kb_j-a_jb_k)^2 (1) (Mitrinović 1970, p. 41; Marsden ...
There are a number of functions in mathematics commonly denoted with a Greek letter lambda. Examples of one-variable functions denoted lambda(n) with a lower case lambda ...
Let n be an integer variable which tends to infinity and let x be a continuous variable tending to some limit. Also, let phi(n) or phi(x) be a positive function and f(n) or ...
1 ... 155|156|157|158|159|160|161 ... 1314 Previous Next

...