TOPICS
Search

Jacobi Amplitude


The variable phi (also denoted am(u,k)) used in elliptic functions and elliptic integrals is called the amplitude (or Jacobi amplitude). It can be defined by

phi=am(u,k)
(1)
=int_0^udn(u^',k)du^',
(2)

where dn(u,k) is a Jacobi elliptic function with elliptic modulus. As is common with Jacobi elliptic functions, the modulus k is often suppressed for conciseness. The Jacobi amplitude is the inverse function of the elliptic integral of the first kind. The amplitude function is implemented in the Wolfram Language as JacobiAmplitude[u, m], where m=k^2 is the parameter.

It is related to the elliptic integral of the first kind F(u,k) by

 F(am(u,k),k)=u
(3)

(Abramowitz and Stegun 1972, p. 589).

The derivative of the Jacobi amplitude is given by

 d/(du)am(u,k)=dn(u,k),
(4)

or using the notation phi,

 (dphi)/(du)=sqrt(1-k^2sin^2phi)=dn(u,k).
(5)

The amplitude function has the special values

am(0,k)=0
(6)
am(K(k),k)=1/2pi,
(7)

where K(k) is a complete elliptic integral of the first kind. In addition, it obeys the identities

sinphi=sin(am(u,k))
(8)
=sn(u,k)
(9)
cosphi=cos(am(u,k))
(10)
=cn(u,k)
(11)
sqrt(1-k^2sin^2phi)=sqrt(1-k^2sin^2(am(u,k)))
(12)
=dn(u,k),
(13)

which serve as definitions for the Jacobi elliptic functions.


See also

Amplitude, Delta Amplitude, Elliptic Argument, Elliptic Characteristic, Elliptic Function, Elliptic Integral of the First Kind, Elliptic Modulus, Jacobi Elliptic Functions, Modular Angle, Nome, Parameter

Related Wolfram sites

http://functions.wolfram.com/EllipticFunctions/JacobiAmplitude/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 589-590, 1972.Fischer, G. (Ed.). Plate 132 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, p. 129, 1986.Jacobi, C. G. J. J. für Math. 18, 12 and 20, 1838.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, p. 494, 1990.

Cite this as:

Weisstein, Eric W. "Jacobi Amplitude." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/JacobiAmplitude.html

Subject classifications