Search Results for ""
12071 - 12080 of 13135 for science historySearch Results

Let z be defined as a function of w in terms of a parameter alpha by z=w+alphaphi(z). (1) Then Lagrange's inversion theorem, also called a Lagrange expansion, states that any ...
A Laman graph is a graph satisfying Laman's theorem. In other words, it is a graph G have exactly 2n-3 graph edges, where n is the number of graph vertices in G and for which ...
A Lambert series is a series of the form F(x)=sum_(n=1)^inftya_n(x^n)/(1-x^n) (1) for |x|<1. Then F(x) = sum_(n=1)^(infty)a_nsum_(m=1)^(infty)x^(mn) (2) = ...
Landau's problems are the four "unattackable" problems mentioned by Landau in the 1912 Fifth Congress of Mathematicians in Cambridge, namely: 1. The Goldbach conjecture, 2. ...
Let z=re^(itheta)=x+iy be a complex number, then inequality |(zexp(sqrt(1-z^2)))/(1+sqrt(1-z^2))|<=1 (1) holds in the lens-shaped region illustrated above. Written explicitly ...
The Laplacian for a scalar function phi is a scalar differential operator defined by (1) where the h_i are the scale factors of the coordinate system (Weinberg 1972, p. 109; ...
The Laplacian matrix, sometimes also called the admittance matrix (Cvetković et al. 1998, Babić et al. 2002) or Kirchhoff matrix, of a graph G, where G=(V,E) is an ...
A k×n Latin rectangle is a k×n matrix with elements a_(ij) in {1,2,...,n} such that entries in each row and column are distinct. If k=n, the special case of a Latin square ...
Let L=<L, v , ^ > and K=<K, v , ^ > be lattices, and let h:L->K. Then h is a lattice homomorphism if and only if for any a,b in L, h(a v b)=h(a) v h(b) and h(a ^ b)=h(a) ^ ...
If f(z) is analytic throughout the annular region between and on the concentric circles K_1 and K_2 centered at z=a and of radii r_1 and r_2<r_1 respectively, then there ...

...