TOPICS
Search

Lattice Homomorphism


Let L=<L, v , ^ > and K=<K, v , ^ > be lattices, and let h:L->K. Then h is a lattice homomorphism if and only if for any a,b in L, h(a v b)=h(a) v h(b) and h(a ^ b)=h(a) ^ h(b). Thus a lattice homomorphism is a specific kind of structure homomorphism. In other words, the mapping h is a lattice homomorphism if it is both a join-homomorphism and a meet-homomorphism.

If h is a one-to-one lattice homomorphism, then it is a lattice embedding, and if a lattice embedding is onto, then it is a lattice isomorphism.

An example of an important lattice isomorphism in universal algebra is the isomorphism that is guaranteed by the correspondence theorem, which states that if A is an algebra and theta is a congruence on A, then the mapping h:[theta,del _A]->Con(A/theta) that is defined by the formula

 h(phi)=phi/theta={([a]_theta,[b]_theta) in (A/theta)^2|(a,b) in phi}

is a lattice isomorphism.


See also

Lattice, Lattice Embedding, Lattice Isomorphism, Structure Homomorphism

This entry contributed by Matt Insall (author's link)

Explore with Wolfram|Alpha

References

Bandelt, H. H. "Tolerance Relations on Lattices." Bull. Austral. Math. Soc. 23, 367-381, 1981.Birkhoff, G. Lattice Theory, 3rd ed. Providence, RI: Amer. Math. Soc., 1967.Burris, S. and Sankappanavar, H. P. A Course in Universal Algebra. New York: Springer-Verlag, 1981. http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.Chajda, I. and Zelinka, B. "Tolerances and Convexity." Czech. Math. J. 29, 584-587, 1979.Chajda, I. and Zelinka, B. "A Characterization of Tolerance-Distributive Tree Semilattices." Czech. Math. J. 37, 175-180, 1987.Gehrke, M.; Kaiser, K.; and Insall, M. "Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische Logik und Grundlagen der Mathematik 36, 123-131, 1990.Grätzer, G. Lattice Theory: First Concepts and Distributive Lattices. San Francisco, CA: W. H. Freeman, 1971.Grätzer, G. Universal Algebra, 2nd ed. New York: Springer-Verlag, 1979.Grätzer, G. General Lattice Theory, 2nd ed. Boston, MA: Birkhäuser, 1998.Hobby, D. and McKenzie, R. The Structure of Finite Algebras. Providence, RI: Amer. Math. Soc., 1988.Insall, E. "Nonstandard Methods and Finiteness Conditions in Algebra." Ph.D. dissertation. Houston, TX: University of Houston, 1989.Insall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.Insall, M. "Geometric Conditions for Local Finiteness of a Lattice of Convex Sets." Math. Moravica 1, 35-40, 1997.Schweigert, D. "Central Relations on Lattices." J. Austral. Math. Soc. 37, 213-219, 1988.Schweigert, D. and Szymanska, M. "On Central Relations of Complete Lattices." Czech. Math. J. 37, 70-74, 1987.

Referenced on Wolfram|Alpha

Lattice Homomorphism

Cite this as:

Insall, Matt. "Lattice Homomorphism." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/LatticeHomomorphism.html

Subject classifications