Search Results for ""
21 - 30 of 502 for sandpile model self organized criticalit...Search Results

Let A be a C^*-algebra. An element a in A is called self-adjoint if a^*=a. For example, the real functions of the C^*-algebra of C([a,b]) of continuous complex-valued ...
A number (usually base 10 unless specified otherwise) which has no digitaddition generator. Such numbers were originally called Colombian numbers (S. 1974). There are ...
A self-complementary graph is a graph which is isomorphic to its graph complement. The numbers of simple self-complementary graphs on n=1, 2, ... nodes are 1, 0, 0, 1, 2, 0, ...
A triangle that is equal to its polar triangle with respect to a given conic is said to be self-polar with respect to that conic. Any triangle is self-polar with respect to ...
The Kermack-McKendrick model is an SIR model for the number of people infected with a contagious illness in a closed population over time. It was proposed to explain the ...
Let G=(V,E) be a finite graph, let Omega be the set Omega={0,1}^E whose members are vectors omega=(omega(e):e in E), and let F be the sigma-algebra of all subsets of Omega. A ...
A matrix A for which A^(H)=A^(T)^_=A, where the conjugate transpose is denoted A^(H), A^(T) is the transpose, and z^_ is the complex conjugate. If a matrix is self-adjoint, ...
The Klein-Beltrami model of hyperbolic geometry consists of an open disk in the Euclidean plane whose open chords correspond to hyperbolic lines. Two lines l and m are then ...
A d-dimensional discrete percolation model is said to be inhomogeneous if different graph edges (in the case of bond percolation models) or vertices (in the case of site ...
A 2-dimensional discrete percolation model is said to be mixed if both graph vertices and graph edges may be "blocked" from allowing fluid flow (i.e., closed in the sense of ...

...