TOPICS
Search

Search Results for ""


151 - 160 of 214 for ramanujan biographySearch Results
The Bessel differential equation is the linear second-order ordinary differential equation given by x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0. (1) Equivalently, dividing ...
Euler (1772ab) conjectured that there are no positive integer solutions to the quartic Diophantine equation A^4=B^4+C^4+D^4. This conjecture was disproved by Elkies (1988), ...
The values of -d for which imaginary quadratic fields Q(sqrt(-d)) are uniquely factorable into factors of the form a+bsqrt(-d). Here, a and b are half-integers, except for ...
The hyperbolic cosecant is defined as cschz=1/(sinhz)=2/(e^z-e^(-z)). (1) It is implemented in the Wolfram Language as Csch[z]. It is related to the hyperbolic cotangent ...
The hyperbolic secant is defined as sechz = 1/(coshz) (1) = 2/(e^z+e^(-z)), (2) where coshz is the hyperbolic cosine. It is implemented in the Wolfram Language as Sech[z]. On ...
An L-algebraic number is a number theta in (0,1) which satisfies sum_(k=0)^nc_kL(theta^k)=0, (1) where L(x) is the Rogers L-function and c_k are integers not all equal to 0 ...
The odd divisor function sigma_k^((o))(n)=sum_(d|n; d odd)d^k (1) is the sum of kth powers of the odd divisors of a number n. It is the analog of the divisor function for odd ...
The number of partitions of n in which no parts are multiples of k is sometimes denoted b_k(n) (Gordon and Ono 1997). b_k(n) is also the number of partitions of n into at ...
product_(k=1)^(infty)(1-x^k) = sum_(k=-infty)^(infty)(-1)^kx^(k(3k+1)/2) (1) = 1+sum_(k=1)^(infty)(-1)^k[x^(k(3k-1)/2)+x^(k(3k+1)/2)] (2) = (x)_infty (3) = ...
Let pi_(m,n)(x) denote the number of primes <=x which are congruent to n modulo m (i.e., the modular prime counting function). Then one might expect that ...
1 ... 13|14|15|16|17|18|19 ... 22 Previous Next

...