Search Results for ""
181 - 190 of 264 for primality TestSearch Results
Define a Bouniakowsky polynomial as an irreducible polynomial f(x) with integer coefficients, degree >1, and GCD(f(1),f(2),...)=1. The Bouniakowsky conjecture states that ...
Catalan (1876, 1891) noted that the sequence of Mersenne numbers 2^2-1=3, 2^3-1=7, and 2^7-1=127, and (OEIS A007013) were all prime (Dickson 2005, p. 22). Therefore, the ...
In order to find integers x and y such that x^2=y^2 (mod n) (1) (a modified form of Fermat's factorization method), in which case there is a 50% chance that GCD(n,x-y) is a ...
A Fermat prime is a Fermat number F_n=2^(2^n)+1 that is prime. Fermat primes are therefore near-square primes. Fermat conjectured in 1650 that every Fermat number is prime ...
Given a number n, Fermat's factorization methods look for integers x and y such that n=x^2-y^2. Then n=(x-y)(x+y) (1) and n is factored. A modified form of this observation ...
Any composite number n with p|(n/p-1) for all prime divisors p of n. n is a Giuga number iff sum_(k=1)^(n-1)k^(phi(n))=-1 (mod n) (1) where phi is the totient function and ...
If n>1 and n|1^(n-1)+2^(n-1)+...+(n-1)^(n-1)+1, is n necessarily a prime? In other words, defining s_n=sum_(k=1)^(n-1)k^(n-1), does there exist a composite n such that s_n=-1 ...
Mills' theorem states that there exists a real constant A such that |_A^(3^n)_| is prime for all positive integers n (Mills 1947). While for each value of c>=2.106, there are ...
The odd divisor function sigma_k^((o))(n)=sum_(d|n; d odd)d^k (1) is the sum of kth powers of the odd divisors of a number n. It is the analog of the divisor function for odd ...
A prime factorization algorithm also known as Pollard Monte Carlo factorization method. There are two aspects to the Pollard rho factorization method. The first is the idea ...
...
View search results from all Wolfram sites (10246 matches)

