Search Results for ""
491 - 500 of 13135 for number theorySearch Results
Turing machines are defined by sets of rules that operate on four parameters: (state, tape cell color, operation, state). Let the states and tape cell colors be numbered and ...
Apéry's numbers are defined by A_n = sum_(k=0)^(n)(n; k)^2(n+k; k)^2 (1) = sum_(k=0)^(n)([(n+k)!]^2)/((k!)^4[(n-k)!]^2) (2) = _4F_3(-n,-n,n+1,n+1;1,1,1;1), (3) where (n; k) ...
One of the quantities lambda_i appearing in the Gauss-Jacobi mechanical quadrature. They satisfy lambda_1+lambda_2+...+lambda_n = int_a^bdalpha(x) (1) = alpha(b)-alpha(a) (2) ...
The Jacobsthal numbers are the numbers obtained by the U_ns in the Lucas sequence with P=1 and Q=-2, corresponding to a=2 and b=-1. They and the Jacobsthal-Lucas numbers (the ...
The Franel numbers are the numbers Fr_n=sum_(k=0)^n(n; k)^3, (1) where (n; k) is a binomial coefficient. The first few values for n=0, 1, ... are 1, 2, 10, 56, 346, ... (OEIS ...
The Fibonacci numbers are the sequence of numbers {F_n}_(n=1)^infty defined by the linear recurrence equation F_n=F_(n-1)+F_(n-2) (1) with F_1=F_2=1. As a result of the ...
The triangle of numbers A_(n,k) given by A_(n,1)=A_(n,n)=1 (1) and the recurrence relation A_(n+1,k)=kA_(n,k)+(n+2-k)A_(n,k-1) (2) for k in [2,n], where A_(n,k) are shifted ...
An irreducible algebraic integer which has the property that, if it divides the product of two algebraic integers, then it divides at least one of the factors. 1 and -1 are ...
product_(k=1)^(infty)(1-x^k) = sum_(k=-infty)^(infty)(-1)^kx^(k(3k+1)/2) (1) = 1+sum_(k=1)^(infty)(-1)^k[x^(k(3k-1)/2)+x^(k(3k+1)/2)] (2) = (x)_infty (3) = ...
Catalan (1876, 1891) noted that the sequence of Mersenne numbers 2^2-1=3, 2^3-1=7, and 2^7-1=127, and (OEIS A007013) were all prime (Dickson 2005, p. 22). Therefore, the ...
...