TOPICS
Search

Search Results for ""


1931 - 1940 of 13135 for number theorySearch Results
Legendre's conjecture asserts that for every n there exists a prime p between n^2 and (n+1)^2 (Hardy and Wright 1979, p. 415; Ribenboim 1996, pp. 397-398). It is one of ...
The Mordell conjecture states that Diophantine equations that give rise to surfaces with two or more holes have only finite many solutions in Gaussian integers with no common ...
Odd values of Q(n) are 1, 1, 3, 5, 27, 89, 165, 585, ... (OEIS A051044), and occur with ever decreasing frequency as n becomes large (unlike P(n), for which the fraction of ...
d_n=p_(n+1)-p_n. (1) The first few values are 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, ... (OEIS A001223). Rankin has shown that d_n>(clnnlnlnnlnlnlnlnn)/((lnlnlnn)^2) ...
The constant s_0 in Schnirelmann's theorem such that every integer >1 is a sum of at most s_0 primes. Of course, by Vinogradov's theorem, it is known that 4 primes suffice ...
An nth-rank tensor in m-dimensional space is a mathematical object that has n indices and m^n components and obeys certain transformation rules. Each index of a tensor ranges ...
A prime p is said to be a Sophie Germain prime if both p and 2p+1 are prime. The first few Sophie Germain primes are 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, ... (OEIS ...
An elliptic curve of the form y^2=x^3+n for n an integer. This equation has a finite number of solutions in integers for all nonzero n. If (x,y) is a solution, it therefore ...
A primality test that provides an efficient probabilistic algorithm for determining if a given number is prime. It is based on the properties of strong pseudoprimes. The ...
There are several definitions of "almost Hamiltonian" in use. As defined by Punnim et al. (2007), an almost Hamiltonian graph is a graph on n nodes having Hamiltonian number ...
1 ... 191|192|193|194|195|196|197 ... 1314 Previous Next

...