Search Results for ""
1841 - 1850 of 13135 for number theorySearch Results

The (unilateral) Z-transform of a sequence {a_k}_(k=0)^infty is defined as Z[{a_k}_(k=0)^infty](z)=sum_(k=0)^infty(a_k)/(z^k). (1) This definition is implemented in the ...
A connected graph G is distance-regular if for any vertices x and y of G and any integers i,j=0, 1, ...d (where d is the graph diameter), the number of vertices at distance i ...
Isomorphic factorization colors the edges a given graph G with k colors so that the colored subgraphs are isomorphic. The graph G is then k-splittable, with k as the divisor, ...
Let F(m,n) be the number of m×n (0,1)-matrices with no adjacent 1s (in either columns or rows). For n=1, 2, ..., F(n,n) is given by 2, 7, 63, 1234, ... (OEIS A006506). The ...
Given a number n, Fermat's factorization methods look for integers x and y such that n=x^2-y^2. Then n=(x-y)(x+y) (1) and n is factored. A modified form of this observation ...
The parity of an integer is its attribute of being even or odd. Thus, it can be said that 6 and 14 have the same parity (since both are even), whereas 7 and 12 have opposite ...
A Chaitin's constant, also called a Chaitin omega number, introduced by Chaitin (1975), is the halting probability of a universal prefix-free (self-delimiting) Turing ...
Take K a number field and L an Abelian extension, then form a prime divisor m that is divided by all ramified primes of the extension L/K. Now define a map phi_(L/K) from the ...
The German mathematician Kronecker proved that all the Galois extensions of the rationals Q with Abelian Galois groups are subfields of cyclotomic fields Q(mu_n), where mu_n ...
Every finite Abelian group can be written as a group direct product of cyclic groups of prime power group orders. In fact, the number of nonisomorphic Abelian finite groups ...

...