Search Results for ""
2011 - 2020 of 13135 for number senseSearch Results

Just as many interesting integer sequences can be defined and their properties studied, it is often of interest to additionally determine which of their elements are prime. ...
The base 2 method of counting in which only the digits 0 and 1 are used. In this base, the number 1011 equals 1·2^0+1·2^1+0·2^2+1·2^3=11. This base is used in computers, ...
A factorial prime is a prime number of the form n!+/-1, where n! is a factorial. n!-1 is prime for n=3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, 546, 974, ...
A problem posed by the Slovak mathematician Stefan Znám in 1972 asking whether, for all integers k>=2, there exist k integers x_1,...,x_k all greater than 1 such that x_i is ...
Let x be a real number, and let R be the set of positive real numbers mu for which 0<|x-p/q|<1/(q^mu) (1) has (at most) finitely many solutions p/q for p and q integers. Then ...
A strong pseudoprime to a base a is an odd composite number n with n-1=d·2^s (for d odd) for which either a^d=1 (mod n) (1) or a^(d·2^r)=-1 (mod n) (2) for some r=0, 1, ..., ...
Brocard's problem asks to find the values of n for which n!+1 is a square number m^2, where n! is the factorial (Brocard 1876, 1885). The only known solutions are n=4, 5, and ...
Let the divisor function d(n) be the number of divisors of n (including n itself). For a prime p, d(p)=2. In general, sum_(k=1)^nd(k)=nlnn+(2gamma-1)n+O(n^theta), where gamma ...
The nth root of the denominator B_n of the nth convergent A_n/B_n of a number x tends to a constant lim_(n->infty)B_n^(1/n) = e^beta (1) = e^(pi^2/(12ln2)) (2) = 3.275823... ...
By way of analogy with the prime counting function pi(x), the notation pi_(a,b)(x) denotes the number of primes of the form ak+b less than or equal to x (Shanks 1993, pp. ...

...