Search Results for ""
201 - 210 of 524 for multimedia in physics teaching and learn...Search Results
It is always possible to write a sum of sinusoidal functions f(theta)=acostheta+bsintheta (1) as a single sinusoid the form f(theta)=ccos(theta+delta). (2) This can be done ...
The Heine-Borel theorem states that a subspace of R^n (with the usual topology) is compact iff it is closed and bounded. The Heine-Borel theorem can be proved using the ...
In two-dimensional Cartesian coordinates, attempt separation of variables by writing F(x,y)=X(x)Y(y), (1) then the Helmholtz differential equation becomes ...
As shown by Morse and Feshbach (1953), the Helmholtz differential equation is separable in confocal paraboloidal coordinates.
In elliptic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(sinh^2u+sin^2v), h_z=1, and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving a Stäckel ...
The scale factors are h_u=h_v=sqrt(u^2+v^2), h_theta=uv and the separation functions are f_1(u)=u, f_2(v)=v, f_3(theta)=1, given a Stäckel determinant of S=u^2+v^2. The ...
In parabolic cylindrical coordinates, the scale factors are h_u=h_v=sqrt(u^2+v^2), h_z=1 and the separation functions are f_1(u)=f_2(v)=f_3(z)=1, giving Stäckel determinant ...
In two-dimensional polar coordinates, the Helmholtz differential equation is 1/rpartial/(partialr)(r(partialF)/(partialr))+1/(r^2)(partial^2F)/(partialtheta^2)+k^2F=0. (1) ...
The Hh-function is a function closely related to the normal distribution function. It can be defined using the auxilary functions Z(x) = 1/(sqrt(2pi))e^(-x^2/2) (1) Q(x) = ...
A determinant which arises in the solution of the second-order ordinary differential equation x^2(d^2psi)/(dx^2)+x(dpsi)/(dx)+(1/4h^2x^2+1/2h^2-b+(h^2)/(4x^2))psi=0. (1) ...
...