TOPICS
Search

Harmonic Addition Theorem


It is always possible to write a sum of sinusoidal functions

 f(theta)=acostheta+bsintheta
(1)

as a single sinusoid the form

 f(theta)=ccos(theta+delta).
(2)

This can be done by expanding (2) using the trigonometric addition formulas to obtain

 f(theta)=ccosthetacosdelta-csinthetasindelta.
(3)

Now equate the coefficients of (1) and (3)

a=ccosdelta
(4)
b=-csindelta,
(5)

so

tandelta=(sindelta)/(cosdelta)
(6)
=-b/a
(7)

and

a^2+b^2=c^2(cos^2delta+sin^2delta)
(8)
=c^2,
(9)

giving

delta=tan^(-1)(-b/a)
(10)
c=+/-sqrt(a^2+b^2).
(11)

Therefore,

 acostheta+bsintheta 
 =sgn(a)sqrt(a^2+b^2)cos[theta+tan^(-1)(-b/a)]
(12)

(Nahin 1995, p. 346).

In fact, given two general sinusoidal functions with frequency omega,

psi_1=A_1sin(omegat+delta_1)
(13)
psi_2=A_2sin(omegat+delta_2),
(14)

their sum psi can be expressed as a sinusoidal function with frequency omega

psi=psi_1+psi_2
(15)
=A_1[sin(omegat)cosdelta_1+sindelta_1cos(omegat)]+A_2[sin(omegat)cosdelta_2+sindelta_2cos(omegat)]
(16)
=[A_1cosdelta_1+A_2cosdelta_2]sin(omegat)+[A_1sindelta_1+A_2sindelta_2]cos(omegat).
(17)

Now, define

Acosdelta=A_1cosdelta_1+A_2cosdelta_2
(18)
Asindelta=A_1sindelta_1+A_2sindelta_2.
(19)

Then (17) becomes

 Acosdeltasin(omegat)+Asindeltacos(omegat)=Asin(omegat+delta).
(20)

Square and add (◇) and (◇)

 A^2=A_1^2+A_2^2+2A_1A_2cos(delta_2-delta_1).
(21)

Also, divide (◇) by (◇)

 tandelta=(A_1sindelta_1+A_2sindelta_2)/(A_1cosdelta_1+A_2cosdelta_2),
(22)

so

 psi=Asin(omegat+delta),
(23)

where A and delta are defined by (◇) and (◇).

This procedure can be generalized to a sum of n harmonic waves, giving

psi=sum_(i=1)^(n)A_icos(omegat+delta_i)
(24)
=Acos(omegat+delta),
(25)

where

A^2=sum_(i=1)^(n)sum_(j=1)^(n)A_iA_jcos(delta_i-delta_j)
(26)
=sum_(i=1)^(n)A_i^2+2sum_(i=1)^(n)sum_(j>i)^(n)A_iA_jcos(delta_i-delta_j)
(27)

and

 tandelta=(sum_(i=1)^(n)A_isindelta_i)/(sum_(i=1)^(n)A_icosdelta_i).
(28)

See also

Fourier Series, Prosthaphaeresis Formulas, Simple Harmonic Motion, Sinusoid, Superposition Principle, Trigonometric Addition Formulas, Trigonometry

Explore with Wolfram|Alpha

References

Nahin, P. The Science of Radio. Woodbury, NY: American Institute of Physics, 1995.

Referenced on Wolfram|Alpha

Harmonic Addition Theorem

Cite this as:

Weisstein, Eric W. "Harmonic Addition Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/HarmonicAdditionTheorem.html

Subject classifications