Search Results for ""
1661 - 1670 of 2513 for mathematical modelSearch Results
Let S be a mathematical statement, then the Iverson bracket is defined by [S]={0 if S is false; 1 if S is true, (1) and corresponds to the so-called characteristic function. ...
The Kauffman X-polynomial, also called the normalized bracket polynomial, is a 1-variable knot polynomial denoted X (Adams 1994, p. 153), L (Kauffman 1991, p. 33), or F ...
Let x=[a_0;a_1,...]=a_0+1/(a_1+1/(a_2+1/(a_3+...))) (1) be the simple continued fraction of a "generic" real number x, where the numbers a_i are the partial denominator. ...
The problem of determining how many nonattacking kings can be placed on an n×n chessboard. For n=8, the solution is 16, as illustrated above (Madachy 1979). In general, the ...
The partial differential equation 1/(c^2)(partial^2psi)/(partialt^2)=(partial^2psi)/(partialx^2)-mu^2psi (1) that arises in mathematical physics. The quasilinear Klein-Gordon ...
Let R^3 be the space in which a knot K sits. Then the space "around" the knot, i.e., everything but the knot itself, is denoted R^3-K and is called the knot complement of K ...
The mathematical study of knots. Knot theory considers questions such as the following: 1. Given a tangled loop of string, is it really knotted or can it, with enough ...
An algorithm for finding a graph's spanning tree of minimum length. It sorts the edges of a graph in order of increasing cost and then repeatedly adds edges that bridge ...
The ordinary differential equation (1) (Byerly 1959, p. 255). The solution is denoted E_m^p(x) and is known as an ellipsoidal harmonic of the first kind, or Lamé function. ...
In conical coordinates, Laplace's equation can be written ...
...
View search results from all Wolfram sites (24566 matches)

