TOPICS
Search

Search Results for ""


1661 - 1670 of 2513 for mathematical modelSearch Results
Let S be a mathematical statement, then the Iverson bracket is defined by [S]={0 if S is false; 1 if S is true, (1) and corresponds to the so-called characteristic function. ...
The Kauffman X-polynomial, also called the normalized bracket polynomial, is a 1-variable knot polynomial denoted X (Adams 1994, p. 153), L (Kauffman 1991, p. 33), or F ...
Let x=[a_0;a_1,...]=a_0+1/(a_1+1/(a_2+1/(a_3+...))) (1) be the simple continued fraction of a "generic" real number x, where the numbers a_i are the partial denominator. ...
The problem of determining how many nonattacking kings can be placed on an n×n chessboard. For n=8, the solution is 16, as illustrated above (Madachy 1979). In general, the ...
The partial differential equation 1/(c^2)(partial^2psi)/(partialt^2)=(partial^2psi)/(partialx^2)-mu^2psi (1) that arises in mathematical physics. The quasilinear Klein-Gordon ...
Let R^3 be the space in which a knot K sits. Then the space "around" the knot, i.e., everything but the knot itself, is denoted R^3-K and is called the knot complement of K ...
The mathematical study of knots. Knot theory considers questions such as the following: 1. Given a tangled loop of string, is it really knotted or can it, with enough ...
An algorithm for finding a graph's spanning tree of minimum length. It sorts the edges of a graph in order of increasing cost and then repeatedly adds edges that bridge ...
The ordinary differential equation (1) (Byerly 1959, p. 255). The solution is denoted E_m^p(x) and is known as an ellipsoidal harmonic of the first kind, or Lamé function. ...
In conical coordinates, Laplace's equation can be written ...
1 ... 164|165|166|167|168|169|170 ... 252 Previous Next

...