Search Results for ""
31 - 40 of 266 for hypergeometricSearch Results
Clausen's _4F_3 identity _4F_3(a,b,c,d; e,f,g;1)=((2a)_(|d|)(a+b)_(|d|)(2b)_(|d|))/((2a+2b)_(|d|)a_(|d|)b_(|d|)), (1) holds for a+b+c-d=1/2, e=a+b+1/2, a+f=d+1=b+g, where d a ...
Kummer's first formula is (1) where _2F_1(a,b;c;z) is the hypergeometric function with m!=-1/2, -1, -3/2, ..., and Gamma(z) is the gamma function. The identity can be written ...
(Bailey 1935, p. 25), where _7F_6(a_1,...,a_7;b_1,...,b_6) and _4F_3(a_1,...,a_4;b_1,b_2,b_3) are generalized hypergeometric functions with argument z=1 and Gamma(z) is the ...
Lauricella functions are generalizations of the Gauss hypergeometric functions to multiple variables. Four such generalizations were investigated by Lauricella (1893), and ...
where _2F_1(a,b;c;z) is a hypergeometric function and _3F_2(a,b,c;d,e;z) is a generalized hypergeometric function.
_2F_1(-1/2,-1/2;1;h^2) = sum_(n=0)^(infty)(1/2; n)^2h^(2n) (1) = 1+1/4h^2+1/(64)h^4+1/(256)h^6+... (2) (OEIS A056981 and A056982), where _2F_1(a,b;c;x) is a hypergeometric ...
A transformation of a hypergeometric function,
An identity which relates hypergeometric functions,
The identity _2F_1(x,-x;x+n+1;-1)=(Gamma(x+n+1)Gamma(1/2n+1))/(Gamma(x+1/2n+1)Gamma(n+1)), or equivalently ...
rho_n(nu,x)=((1+nu-n)_n)/(sqrt(n!x^n))_1F_1(-n;1+nu-n;x), where (a)_n is a Pochhammer symbol and _1F_1(a;b;z) is a confluent hypergeometric function of the first kind.
...
View search results from all Wolfram sites (259089 matches)

