TOPICS
Search

Search Results for ""


11 - 20 of 266 for hypergeometricSearch Results
The generalized hypergeometric function is given by a hypergeometric series, i.e., a series for which the ratio of successive terms can be written ...
Multiple series generalizations of basic hypergeometric series over the unitary groups U(n+1). The fundamental theorem of U(n) series takes c_1, ..., c_n and x_1, ..., x_n as ...
_2F_1(a,b;c;1)=((c-b)_(-a))/((c)_(-a))=(Gamma(c)Gamma(c-a-b))/(Gamma(c-a)Gamma(c-b)) for R[c-a-b]>0, where _2F_1(a,b;c;x) is a (Gauss) hypergeometric function. If a is a ...
z(1-z)(d^2y)/(dz^2)+[c-(a+b+1)z](dy)/(dz)-aby=0. It has regular singular points at 0, 1, and infty. Every second-order ordinary differential equation with at most three ...
A formal extension of the hypergeometric function to two variables, resulting in four kinds of functions (Appell 1925; Picard 1880ab, 1881; Goursat 1882; Whittaker and Watson ...
If (1-z)^(a+b-c)_2F_1(2a,2b;2c;z)=sum_(n=0)^inftya_nz^n, then where (a)_n is a Pochhammer symbol and _2F_1(a,b;c;z) is a hypergeometric function.
The confluent hypergeometric function of the first kind _1F_1(a;b;z) is a degenerate form of the hypergeometric function _2F_1(a,b;c;z) which arises as a solution the ...
The second-order ordinary differential equation xy^('')+(c-x)y^'-ay=0, sometimes also called Kummer's differential equation (Slater 1960, p. 2; Zwillinger 1997, p. 124). It ...
The confluent hypergeometric function of the second kind gives the second linearly independent solution to the confluent hypergeometric differential equation. It is also ...
_0F_1(;a;z)=lim_(q->infty)_1F_1(q;a;z/q). (1) It has a series expansion _0F_1(;a;z)=sum_(n=0)^infty(z^n)/((a)_nn!) (2) and satisfies z(d^2y)/(dz^2)+a(dy)/(dz)-y=0. (3) It is ...
1|2|3|4|5 ... 27 Previous Next

...