TOPICS
Search

U(n) Basic Hypergeometric Series


Multiple series generalizations of basic hypergeometric series over the unitary groups U(n+1). The fundamental theorem of U(n) series takes c_1, ..., c_n and x_1, ..., x_n as indeterminates and n>=1. Then

 ((c_1...c_n;q)_N)/((q;q)_N) 
=sum_(y_1,y_2,...,y_n>=0; |y|=N){product_(1<=r<s<=n)[(1-(x_r)/(x_s)q^(y_r-y_s))/(1-(x_r)/(x_s))]×product_(r,s=1)^n[(((x_r)/(x_s)c_s;q)_(y_r))/((q(x_r)/(x_s);q)_(y_r))][q^(y_2+2y_3+...+(n-1)y_n)]},

where it is assumed that none of the denominators vanish (Bhatnagar 1995, p. 22). The series in this theorem is called an SU(n) series (Milne 1985; Bhatnagar 1995, p. 22).

Many other q-results, including the q-binomial theorem and q-Saalschütz sum, can be generalized to U(n+1) series.


Explore with Wolfram|Alpha

References

Bhatnagar, G. "U(n+1) Basic Hypergeometric Series." Ch. 2 in Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, pp. 20-38, 1995.Biedenharn, L. C. and Louck, J. D. Angular Momentum in Quantum Physics: Theory and Applications. Reading, MA: Addison-Wesley, 1981.Biedenharn, L. C. and Louck, J. D. The Racah-Wigner Algebra in Quantum Theory. Reading, MA: Addison-Wesley, 1981.Denis, R. Y. and Gustafson, R. A. "An SU(n) q-Beta Integral Transformation and Multiple Hypergeometric Series Identities." SIAM J. Math. Anal. 23, 552-561, 1992.Gustafson, R. A. "Multilateral Summation Theorems for Ordinary and Basic Hypergeometric Series in U(n)." SIAM J. Math. Anal. 18, 1576-1596, 1987.Gustafson, R. A. and Krattenthaler, C. "Heine Transformations for a New Kind of Basic Hypergeometric Series in U(n)." J. Comput. Appl. Math. 68, 151-158, 1996.Gustafson, R. A. and Krattenthaler, C. "Determinants Evaluations and U(n) Extensions of Heine's _2phi_1 Transformations." In Special Functions, q-Series, and Related Topics (Ed. M. E. H. Ismail, D. R. Masson, and M. Rahman). Providence, RI: Amer. Math. Soc., pp. 83-89, 1997.Holman, W. J. III. "Summation Theorems for Hypergeometric Series in U(n)." SIAM J. Math. Anal. 11, 523-532, 1980.Holman, W. J. III.; Biedenharn, L. C.; and Louck, J. D. "On Hypergeometric Series Well-Poised in SU(n)." SIAM J. Math. Anal. 7, 529-541, 1976.Milne, S. C. "An Elementary Proof of the Macdonald Identities for A_l^((1))." Adv. Math. 57, 34-70, 1985.Milne, S. C. "Basic Hypergeometric Series Very Well-Poised in U(n)." J. Math. Anal. Appl. 122, 223-256, 1987.Milne, S. C. "Balanced _3phi_2 Summation for U(n) Basic Hypergeometric Series." Adv. Math. 131, 93-187, 1997.

Referenced on Wolfram|Alpha

U(n) Basic Hypergeometric Series

Cite this as:

Weisstein, Eric W. "U(n) Basic Hypergeometric Series." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/UnBasicHypergeometricSeries.html

Subject classifications