Search Results for ""
3151 - 3160 of 13135 for floating point numberSearch Results

Given a sequence of values {a_k}_(k=1)^n, the high-water marks are the values at which the running maximum increases. For example, given a sequence (3,5,7,8,8,5,7,9,2,5) with ...
Legendre's conjecture asserts that for every n there exists a prime p between n^2 and (n+1)^2 (Hardy and Wright 1979, p. 415; Ribenboim 1996, pp. 397-398). It is one of ...
The Mordell conjecture states that Diophantine equations that give rise to surfaces with two or more holes have only finite many solutions in Gaussian integers with no common ...
Odd values of Q(n) are 1, 1, 3, 5, 27, 89, 165, 585, ... (OEIS A051044), and occur with ever decreasing frequency as n becomes large (unlike P(n), for which the fraction of ...
The positive integers 216 and 12960000 appear in an obscure passage in Plato's The Republic. In this passage, Plato alludes to the fact that 216 is equal to 6^3, where 6 is ...
d_n=p_(n+1)-p_n. (1) The first few values are 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, ... (OEIS A001223). Rankin has shown that d_n>(clnnlnlnnlnlnlnlnn)/((lnlnlnn)^2) ...
The mathematical study of combinatorial objects in which a certain degree of order must occur as the scale of the object becomes large. Ramsey theory is named after Frank ...
The constant s_0 in Schnirelmann's theorem such that every integer >1 is a sum of at most s_0 primes. Of course, by Vinogradov's theorem, it is known that 4 primes suffice ...
There are two definitions of the supersingular primes: one group-theoretic, and the other number-theoretic. Group-theoretically, let Gamma_0(N) be the modular group Gamma0, ...
Just as many interesting integer sequences can be defined and their properties studied, it is often of interest to additionally determine which of their elements are prime. ...

...