Search Results for ""
171 - 180 of 307 for expansionSearch Results
The Euler polynomial E_n(x) is given by the Appell sequence with g(t)=1/2(e^t+1), (1) giving the generating function (2e^(xt))/(e^t+1)=sum_(n=0)^inftyE_n(x)(t^n)/(n!). (2) ...
Let theta(t) be the Riemann-Siegel function. The unique value g_n such that theta(g_n)=pin (1) where n=0, 1, ... is then known as a Gram point (Edwards 2001, pp. 125-126). An ...
The Gregory series is a pi formula found by Gregory and Leibniz and obtained by plugging x=1 into the Leibniz series, pi/4=sum_(k=1)^infty((-1)^(k+1))/(2k-1)=1-1/3+1/5-... ...
The Laguerre differential equation is given by xy^('')+(1-x)y^'+lambday=0. (1) Equation (1) is a special case of the more general associated Laguerre differential equation, ...
A McNugget number is a positive integer that can be obtained by adding together orders of McDonald's® Chicken McNuggetsTM (prior to consuming any), which originally came in ...
The continued fraction for ln10 is [0; 1, 2, 3, 1, 6, 3, 1, 1, 2, 1, 1, 1, 1, 3, 10, ...] (OEIS A016730). The Engel expansion is 2, 3, 7, 9, 104, 510, 1413, ... (OEIS ...
The continued fraction for ln2 is [0; 1, 2, 3, 1, 6, 3, 1, 1, 2, 1, 1, 1, 1, 3, 10, ...] (OEIS A016730). It has been computed to 9702699208 terms by E. Weisstein (Aug. 21, ...
Newton's forward difference formula is a finite difference identity giving an interpolated value between tabulated points {f_p} in terms of the first value f_0 and the powers ...
product_(k=1)^(infty)(1-x^k) = sum_(k=-infty)^(infty)(-1)^kx^(k(3k+1)/2) (1) = 1+sum_(k=1)^(infty)(-1)^k[x^(k(3k-1)/2)+x^(k(3k+1)/2)] (2) = (x)_infty (3) = ...
A phi-prime is a prime number appearing in the decimal expansion of the golden ratio phi. The first few are 1618033, 1618033988749, ... (OEIS A064117). The numbers of decimal ...
...
View search results from all Wolfram sites (3792 matches)

