TOPICS
Search

Search Results for ""


6931 - 6940 of 13131 for eulerstotienttheorem.htmlSearch Results
A finite sequence of real numbers {a_k}_(k=1)^n is said to be logarithmically concave (or log-concave) if a_i^2>=a_(i-1)a_(i+1) holds for every a_i with 1<=i<=n-1. A ...
A function f(x) is logarithmically convex on the interval [a,b] if f>0 and lnf(x) is convex on [a,b]. If f(x) and g(x) are logarithmically convex on the interval [a,b], then ...
A function whose value decreases to zero more slowly than any nonzero polynomial is said to be a logarithmically decreasing function. The prototypical example is the function ...
A function whose value increases more slowly to infinity than any nonconstant polynomial is said to be a logarithmically increasing function. The prototypical example is the ...
Logic is the formal mathematical study of the methods, structure, and validity of mathematical deduction and proof. According to Wolfram (2002, p. 860), logic is the most ...
The continuous distribution with parameters m and b>0 having probability and distribution functions P(x) = (e^(-(x-m)/b))/(b[1+e^(-(x-m)/b)]^2) (1) D(x) = 1/(1+e^(-(x-m)/b)) ...
The logistic equation (sometimes called the Verhulst model or logistic growth curve) is a model of population growth first published by Pierre Verhulst (1845, 1847). The ...
Replacing the logistic equation (dx)/(dt)=rx(1-x) (1) with the quadratic recurrence equation x_(n+1)=rx_n(1-x_n), (2) where r (sometimes also denoted mu) is a positive ...
The function z=f(x)=ln(x/(1-x)). (1) This function has an inflection point at x=1/2, where f^('')(x)=(2x-1)/(x^2(x-1)^2)=0. (2) Applying the logit transformation to values ...
A generalization of a Heyting algebra which replaces Boolean algebra in "intuitionistic" logic.
1 ... 691|692|693|694|695|696|697 ... 1314 Previous Next

...