TOPICS
Search

Search Results for ""


71 - 80 of 791 for euler mascheroniSearch Results
Infinite series of various simple functions of the logarithm include sum_(k=1)^^^inftylnk = 1/2ln(2pi) (1) sum_(k=1)^^^infty(-1)^klnk = 1/2ln(1/2pi) (2) ...
The most common form of cosine integral is Ci(x) = -int_x^infty(costdt)/t (1) = gamma+lnx+int_0^x(cost-1)/tdt (2) = 1/2[Ei(ix)+Ei(-ix)] (3) = -1/2[E_1(ix)+E_1(-ix)], (4) ...
Consider the inequality sigma(n)<e^gammanlnlnn for integer n>1, where sigma(n) is the divisor function and gamma is the Euler-Mascheroni constant. This holds for 7, 11, 13, ...
E. Pegg Jr. (pers. comm., Nov. 8, 2004) found an approximation to Apéry's constant zeta(3) given by zeta(3) approx 10+zeta(16)-sqrt(96), (1) which is good to 6 digits. M. ...
A series is said to be conditionally convergent iff it is convergent, the series of its positive terms diverges to positive infinity, and the series of its negative terms ...
Let the divisor function d(n) be the number of divisors of n (including n itself). For a prime p, d(p)=2. In general, sum_(k=1)^nd(k)=nlnn+(2gamma-1)n+O(n^theta), where gamma ...
A special case of the Artin L-function for the polynomial x^2+1. It is given by L(s)=product_(p odd prime)1/(1-chi^-(p)p^(-s)), (1) where chi^-(p) = {1 for p=1 (mod 4); -1 ...
For |z|<1, product_(k=1)^infty(1+z^k)=product_(k=1)^infty(1-z^(2k-1))^(-1). (1) Both of these have closed form representation 1/2(-1;z)_infty, (2) where (a;q)_infty is a ...
For p an odd prime and a positive integer a which is not a multiple of p, a^((p-1)/2)=(a/p) (mod p), where (a|p) is the Legendre symbol.
The Engel expansion, also called the Egyptian product, of a positive real number x is the unique increasing sequence {a_1,a_2,...} of positive integers a_i such that ...
1 ... 5|6|7|8|9|10|11 ... 80 Previous Next

...