TOPICS
Search

Search Results for ""


11 - 20 of 791 for euler mascheroniSearch Results
Define the Euler measure of a polyhedral set as the Euler integral of its indicator function. It is easy to show by induction that the Euler measure of a closed bounded ...
Let a prime number generated by Euler's prime-generating polynomial n^2+n+41 be known as an Euler prime. (Note that such primes are distinct from prime Euler numbers, which ...
The Euler formula, sometimes also called the Euler identity (e.g., Trott 2004, p. 174), states e^(ix)=cosx+isinx, (1) where i is the imaginary unit. Note that Euler's ...
An Euler pseudoprime to the base b is a composite number n which satisfies b^((n-1)/2)=+/-1 (mod n). The first few base-2 Euler pseudoprimes are 341, 561, 1105, 1729, 1905, ...
Define g(k) as the quantity appearing in Waring's problem, then Euler conjectured that g(k)=2^k+|_(3/2)^k_|-2, where |_x_| is the floor function.
The Euler triangle formula states that the distance d between the incenter and circumcenter of a triangle is given by d^2=R(R-2r), where R is the circumradius and r is the ...
The Euler points are the midpoints E_A, E_B, E_C of the segments which join the vertices A, B, and C of a triangle DeltaABC and the orthocenter H. They are three of the nine ...
Let a closed surface have genus g. Then the polyhedral formula generalizes to the Poincaré formula chi(g)=V-E+F, (1) where chi(g)=2-2g (2) is the Euler characteristic, ...
A square array made by combining n objects of two types such that the first and second elements form Latin squares. Euler squares are also known as Graeco-Latin squares, ...
The Euler numbers, also called the secant numbers or zig numbers, are defined for |x|<pi/2 by sechx-1=-(E_1^*x^2)/(2!)+(E_2^*x^4)/(4!)-(E_3^*x^6)/(6!)+... (1) ...
1|2|3|4|5 ... 80 Previous Next

...