TOPICS
Search

Search Results for ""


651 - 660 of 782 for eulerSearch Results
Iff p is a prime, then (p-1)!+1 is a multiple of p, that is (p-1)!=-1 (mod p). (1) This theorem was proposed by John Wilson and published by Waring (1770), although it was ...
An algorithm which finds a polynomial recurrence for terminating hypergeometric identities of the form sum_(k)(n; ...
The Barnes G-function is an analytic continuation of the G-function defined in the construction of the Glaisher-Kinkelin constant G(n)=([Gamma(n)]^(n-1))/(H(n-1)) (1) for ...
Scan the decimal expansion of a constant (including any digits to the left of the decimal point) until all n-digit strings have been seen (including 0-padded strings). The ...
A Diophantine equation is an equation in which only integer solutions are allowed. Hilbert's 10th problem asked if an algorithm existed for determining whether an arbitrary ...
The 5.1.2 fifth-order Diophantine equation A^5=B^5+C^5 (1) is a special case of Fermat's last theorem with n=5, and so has no solution. improving on the results on Lander et ...
Let x=[a_0;a_1,...]=a_0+1/(a_1+1/(a_2+1/(a_3+...))) (1) be the simple continued fraction of a "generic" real number x, where the numbers a_i are the partial denominator. ...
The Möbius function is a number theoretic function defined by mu(n)={0 if n has one or more repeated prime factors; 1 if n=1; (-1)^k if n is a product of k distinct primes, ...
For a right triangle with legs a and b and hypotenuse c, a^2+b^2=c^2. (1) Many different proofs exist for this most fundamental of all geometric theorems. The theorem can ...
N_phi(m) is the number of integers n for which the totient function phi(n)=m, also called the multiplicity of m (Guy 1994). Erdős (1958) proved that if a multiplicity occurs ...
1 ... 63|64|65|66|67|68|69 ... 79 Previous Next

...