is the number of integers
for which the totient function
,
also called the multiplicity of
(Guy 1994). Erdős (1958) proved that if a multiplicity
occurs once, it occurs infinitely often.
The values of
for
,
2, ... are 2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, ... (OEIS A014197),
and the nonzero values are 2, 3, 4, 4, 5, 2, 6, 6, 4, 5, 2, 10, 2, 2, 7, 8, 9, ...
(OEIS A058277), which occur for
, 2, 4, 6, 8, 10, 12, 16, 18, 20, ... (OEIS A002202).
The table below lists values for
.
1 | 2 | 1, 2 |
2 | 3 | 3, 4, 6 |
4 | 4 | 5, 8, 10, 12 |
6 | 4 | 7, 9, 14, 18 |
8 | 5 | 15, 16, 20, 24, 30 |
10 | 2 | 11, 22 |
12 | 6 | 13, 21, 26, 28, 36, 42 |
16 | 6 | 17, 32, 34, 40, 48, 60 |
18 | 4 | 19, 27, 38, 54 |
20 | 5 | 25, 33, 44, 50, 66 |
22 | 2 | 23, 46 |
24 | 10 | 35, 39, 45, 52, 56, 70, 72, 78, 84, 90 |
28 | 2 | 29, 58 |
30 | 2 | 31, 62 |
32 | 7 | 51, 64, 68, 80, 96, 102, 120 |
36 | 8 | 37, 57, 63, 74, 76, 108, 114, 126 |
40 | 9 | 41, 55, 75, 82, 88, 100, 110, 132, 150 |
42 | 4 | 43, 49, 86, 98 |
44 | 3 | 69, 92, 138 |
46 | 2 | 47, 94 |
48 | 11 | 65, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210 |
The smallest
such that
has exactly 2, 3, 4, ... solutions are given by 1, 2, 4, 8, 12, 32, 36, 40, 24, ...
(OEIS A007374). Including Carmichael's conjecture
that
has no solutions, the smallest
such that
has exactly 0, 1, 2, 3, 4, ... solutions are given
by 3, 0, 1, 2, 4, 8, 12, 32, 36, 40, 24, ... (OEIS A014573).
A table listing the first value of
with multiplicities up to 100 follows.
0 | 3 | 26 | 2560 | 51 | 4992 | 76 | 21840 |
2 | 1 | 27 | 384 | 52 | 17640 | 77 | 9072 |
3 | 2 | 28 | 288 | 53 | 2016 | 78 | 38640 |
4 | 4 | 29 | 1320 | 54 | 1152 | 79 | 9360 |
5 | 8 | 30 | 3696 | 55 | 6000 | 80 | 81216 |
6 | 12 | 31 | 240 | 56 | 12288 | 81 | 4032 |
7 | 32 | 32 | 768 | 57 | 4752 | 82 | 5280 |
8 | 36 | 33 | 9000 | 58 | 2688 | 83 | 4800 |
9 | 40 | 34 | 432 | 59 | 3024 | 84 | 4608 |
10 | 24 | 35 | 7128 | 60 | 13680 | 85 | 16896 |
11 | 48 | 36 | 4200 | 61 | 9984 | 86 | 3456 |
12 | 160 | 37 | 480 | 62 | 1728 | 87 | 3840 |
13 | 396 | 38 | 576 | 63 | 1920 | 88 | 10800 |
14 | 2268 | 39 | 1296 | 64 | 2400 | 89 | 9504 |
15 | 704 | 40 | 1200 | 65 | 7560 | 90 | 18000 |
16 | 312 | 41 | 15936 | 66 | 2304 | 91 | 23520 |
17 | 72 | 42 | 3312 | 67 | 22848 | 92 | 39936 |
18 | 336 | 43 | 3072 | 68 | 8400 | 93 | 5040 |
19 | 216 | 44 | 3240 | 69 | 29160 | 94 | 26208 |
20 | 936 | 45 | 864 | 70 | 5376 | 95 | 27360 |
21 | 144 | 46 | 3120 | 71 | 3360 | 96 | 6480 |
22 | 624 | 47 | 7344 | 72 | 1440 | 97 | 9216 |
23 | 1056 | 48 | 3888 | 73 | 13248 | 98 | 2880 |
24 | 1760 | 49 | 720 | 74 | 11040 | 99 | 26496 |
25 | 360 | 50 | 1680 | 75 | 27720 | 100 | 34272 |
It is thought that (i.e., the totient valence function never takes
on the value 1), but this has not been proven. This assertion is called Carmichael's
totient function conjecture and is equivalent to the statement that for all
,
there exists
such that
(Ribenboim 1996, pp. 39-40). Any counterexample must have more than
digits (Schlafly and Wagon
1994; erroneously given as
in Conway and Guy 1996).