TOPICS
Search

Search Results for ""


51 - 60 of 782 for eulerSearch Results
The Euler-Maclaurin integration and sums formulas can be derived from Darboux's formula by substituting the Bernoulli polynomial B_n(t) in for the function phi(t). ...
A beautiful approximation to the Euler-Mascheroni constant gamma is given by pi/(2e)=0.57786367... (1) (OEIS A086056; E. W. Weisstein, Apr. 18, 2006), which is good to three ...
Euler's 6n+1 theorem states that every prime of the form 6n+1, (i.e., 7, 13, 19, 31, 37, 43, 61, 67, ..., which are also the primes of the form 3n+1; OEIS A002476) can be ...
The simple continued fraction of the Euler-Mascheroni constant gamma is [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] (OEIS A002852). The first few ...
A special case of the Artin L-function for the polynomial x^2+1. It is given by L(s)=product_(p odd prime)1/(1-chi^-(p)p^(-s)), (1) where chi^-(p) = {1 for p=1 (mod 4); -1 ...
For |z|<1, product_(k=1)^infty(1+z^k)=product_(k=1)^infty(1-z^(2k-1))^(-1). (1) Both of these have closed form representation 1/2(-1;z)_infty, (2) where (a;q)_infty is a ...
For p an odd prime and a positive integer a which is not a multiple of p, a^((p-1)/2)=(a/p) (mod p), where (a|p) is the Legendre symbol.
An arbitrary rotation may be described by only three parameters.
The partial differential equation u_(xy)+(alphau_x-betau_y)/(x-y)=0.
Let g(x)=(1-x^2)(1-k^2x^2). Then int_0^a(dx)/(sqrt(g(x)))+int_0^b(dx)/(sqrt(g(x)))=int_0^c(dx)/(sqrt(g(x))), where c=(bsqrt(g(a))+asqrt(g(b)))/(sqrt(1-k^2a^2b^2)).
1 ... 3|4|5|6|7|8|9 ... 79 Previous Next

...