Search Results for ""
1461 - 1470 of 13135 for dimensional analysisSearch Results
For any alpha in A (where A denotes the set of algebraic numbers), let |alpha|^_ denote the maximum of moduli of all conjugates of alpha. Then a function ...
The elliptic logarithm is generalization of integrals of the form int_infty^x(dt)/(sqrt(t^2+at)), for a real, which can be expressed in terms of logarithmic and inverse ...
_2F_1(a,b;c;z)=int_0^1(t^(b-1)(1-t)^(c-b-1))/((1-tz)^a)dt, (1) where _2F_1(a,b;c;z) is a hypergeometric function. The solution can be written using the Euler's ...
Let A be a C^*-algebra and A_+ be its positive part. Suppose that E is a complex linear space which is a left A-module and lambda(ax)=(lambdaa)x=a(lambdax), where lambda in ...
Suppose f(x) is continuous at a stationary point x_0. 1. If f^'(x)>0 on an open interval extending left from x_0 and f^'(x)<0 on an open interval extending right from x_0, ...
Let n>=0 and alpha_1, alpha_2, ...be the positive roots of J_n(x)=0, where J_n(z) is a Bessel function of the first kind. An expansion of a function in the interval (0,1) in ...
A Fréchet space is a complete and metrizable space, sometimes also with the restriction that the space be locally convex. The topology of a Fréchet space is defined by a ...
_2F_1(a,b;c;1)=((c-b)_(-a))/((c)_(-a))=(Gamma(c)Gamma(c-a-b))/(Gamma(c-a)Gamma(c-b)) for R[c-a-b]>0, where _2F_1(a,b;c;x) is a (Gauss) hypergeometric function. If a is a ...
If X is a locally compact T2-space, then the set C_ degrees(X) of all continuous complex valued functions on X vanishing at infinity (i.e., for each epsilon>0, the set {x in ...
The Gibbs phenomenon is an overshoot (or "ringing") of Fourier series and other eigenfunction series occurring at simple discontinuities. It can be reduced with the Lanczos ...
...
View search results from all Wolfram sites (197169 matches)

