Search Results for ""
1431 - 1440 of 13134 for decoherence theorySearch Results
A Saunders graphic is a plot of the dth base-b digits of a function f(x,y) as a function of x and y. The plots above show Saunders graphics for the functions ...
Let lambda_1, ..., lambda_n in C be linearly independent over the rationals Q, then Q(lambda_1,...,lambda_n,e^(lambda_1),...,e^(lambda_n)) has transcendence degree at least n ...
The Schröder-Bernstein theorem for numbers states that if n<=m<=n, then m=n. For sets, the theorem states that if there are injections of the set A into the set B and of B ...
The scramble number sn(G) of a graph G is a graph invariant developed to aid in the study of gonality of graphs. The scramble number is NP-hard to compute (Echavarria et al. ...
Given a Seifert form f(x,y), choose a basis e_1, ..., e_(2g) for H_1(M^^) as a Z-module so every element is uniquely expressible as n_1e_1+...+n_(2g)e_(2g) (1) with n_i ...
Let x be a positive number, and define lambda(d) = mu(d)[ln(x/d)]^2 (1) f(n) = sum_(d)lambda(d), (2) where the sum extends over the divisors d of n, and mu(n) is the Möbius ...
The sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ... (OEIS A002024) consisting of 1 copy of 1, 2 copies of 2, 3 copies of 3, and so on. Surprisingly, there exist simple formulas ...
A mathematical object defined for a set and a binary operator in which the multiplication operation is associative. No other restrictions are placed on a semigroup; thus a ...
A Lie algebra over a field of characteristic zero is called semisimple if its Killing form is nondegenerate. The following properties can be proved equivalent for a ...
A Lie group is called semisimple if its Lie algebra is semisimple. For example, the special linear group SL(n) and special orthogonal group SO(n) (over R or C) are ...
...