TOPICS
Search

Search Results for ""


111 - 120 of 1059 for curves geometrical Search Results
The inverse curve of a sinusoidal spiral r=a^(1/n)[cos(nt)]^(1/n) with inversion center at the origin and inversion radius k is another sinusoidal spiral ...
A curve on the surface of a sphere. Examples include the baseball cover, Seiffert's spherical spiral, spherical helix, and spherical spiral.
The cubic curve defined by ax^3+bx^2+cx+d=xy with a!=0. The curve cuts the axis in either one or three points. It was the 66th curve in Newton's classification of cubics. ...
A plane curve proposed by Descartes to challenge Fermat's extremum-finding techniques. In parametric form, x = (3at)/(1+t^3) (1) y = (3at^2)/(1+t^3). (2) The curve has a ...
Given a circle C with center O and radius k, then two points P and Q are inverse with respect to C if OP·OQ=k^2. If P describes a curve C_1, then Q describes a curve C_2 ...
Lissajous curves are the family of curves described by the parametric equations x(t) = Acos(omega_xt-delta_x) (1) y(t) = Bcos(omega_yt-delta_y), (2) sometimes also written in ...
Let C be a curve, let O be a fixed point (the pole), and let O^' be a second fixed point. Let P and P^' be points on a line through O meeting C at Q such that P^'Q=QP=QO^'. ...
The bifoliate is the quartic curve given by the Cartesian equation x^4+y^4=2axy^2 (1) and the polar equation r=(8costhetasin^2theta)/(3+cos(4theta))a (2) for theta in [0,pi]. ...
The pedal curve of an epicycloid x = (a+b)cost-b[((a+b)t)/b] (1) y = (a+b)sint-bsin[((a+b)t)/b] (2) with pedal point at the origin is x_p = 1/2(a+2b){cost-cos[((a+b)t)/b]} ...
A strophoid of a circle with the pole O at the center of the circle and the fixed point P on the circumference of the circle. Freeth (1878, pp. 130 and 228) described this ...
1 ... 9|10|11|12|13|14|15 ... 106 Previous Next

...