TOPICS
Search

Search Results for ""


411 - 420 of 789 for computer graphicsSearch Results
The angle obtained by drawing the auxiliary circle of an ellipse with center O and focus F, and drawing a line perpendicular to the semimajor axis and intersecting it at A. ...
G_(ab)=R_(ab)-1/2Rg_(ab), where R_(ab) is the Ricci curvature tensor, R is the scalar curvature, and g_(ab) is the metric tensor. (Wald 1984, pp. 40-41). It satisfies ...
The Erdős-Borwein constant E, sometimes also denoted alpha, is the sum of the reciprocals of the Mersenne numbers, E = sum_(n=1)^(infty)1/(2^n-1) (1) = ...
A deeper result than the Hardy-Ramanujan theorem. Let N(x,a,b) be the number of integers in [n,x] such that inequality a<=(omega(n)-lnlnn)/(sqrt(lnlnn))<=b (1) holds, where ...
An Euler-Jacobi pseudoprime to a base a is an odd composite number n such that (a,n)=1 and the Jacobi symbol (a/n) satisfies (a/n)=a^((n-1)/2) (mod n) (Guy 1994; but note ...
The exponent laws, also called the laws of indices (Higgens 1998) or power rules (Derbyshire 2004, p. 65), are the rules governing the combination of exponents (powers). The ...
The sum over all external (square) nodes of the lengths of the paths from the root of an extended binary tree to each node. For example, in the tree above, the external path ...
The converse of Fermat's little theorem is also known as Lehmer's theorem. It states that, if an integer x is prime to m and x^(m-1)=1 (mod m) and there is no integer e<m-1 ...
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) n!_F. It is given by the infinite product ...
The fibonomial coefficient (sometimes also called simply the Fibonacci coefficient) is defined by [m; k]_F=(F_mF_(m-1)...F_(m-k+1))/(F_1F_2...F_k), (1) where [m; 0]_F=1 and ...
1 ... 39|40|41|42|43|44|45 ... 79 Previous Next

...